留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

并联石墨烯热声激励器的声场建模及实验研究

张昊原 王鹏 刘应征

张昊原, 王鹏, 刘应征. 并联石墨烯热声激励器的声场建模及实验研究[J]. 实验流体力学, 2023, 37(2): 94-104 doi: 10.11729/syltlx20210130
引用本文: 张昊原, 王鹏, 刘应征. 并联石墨烯热声激励器的声场建模及实验研究[J]. 实验流体力学, 2023, 37(2): 94-104 doi: 10.11729/syltlx20210130
ZHANG H Y, WANG P, LIU Y Z. Acoustic field modeling and measurement of the parallel graphene based thermo-acoustic actuator[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 94-104 doi: 10.11729/syltlx20210130
Citation: ZHANG H Y, WANG P, LIU Y Z. Acoustic field modeling and measurement of the parallel graphene based thermo-acoustic actuator[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 94-104 doi: 10.11729/syltlx20210130

并联石墨烯热声激励器的声场建模及实验研究

doi: 10.11729/syltlx20210130
基金项目: 国家自然科学基金项目(12172221)
详细信息
    作者简介:

    张昊原:(1999—),男,山东淄博人,硕士研究生。研究方向:声激励流动控制。通信地址:上海市闵行区东川路800号上海交通大学闵行校区机械与动力工程学院叶轮机械研究所(200240)。E-mail:zhyzcd@sjtu.edu.cn

    通讯作者:

    E-mail:5080209340@sjtu.edu.cn

  • 中图分类号: V211.1

Acoustic field modeling and measurement of the parallel graphene based thermo-acoustic actuator

  • 摘要: 主动流动控制技术是提升航空航天飞行器气动特性的有效手段,其中激励器是这些控制技术的核心组件,如等离子体激励器、合成射流激励器以及振荡射流激励器等。本文提出了一种基于热声效应的并联石墨烯热声激励器,该激励器具有结构简单、输入功率低、控制频率宽以及结构适应性强等优点,能够适应飞行器各种复杂曲壁面安装环境和变飞行工况,具有良好的应用前景。具体而言,该热声激励器利用石墨烯材料比热容极低和热导率高的特性,通过焦耳加热原理向周围空气辐射周期性的声场以进行声激励控制。首先,通过热声理论对石墨烯热声激励器进行声场建模,建模中加入了组合声源叠加原理,优化了声波相位差和声场指向性计算方法;其次,改进了石墨热声烯激励器的电路连接方式,采用并联石墨烯薄膜有效提升了声场声压幅值;最后,搭建了石墨烯热声激励器的声压测试平台,验证并研究了并联石墨烯热声激励器的声场特征,分析了输入功率、频率、测试距离等因素的影响。
  • 图  1  石墨烯热声激励器实物图与热声效应原理图

    Figure  1.  Picture of graphene thermo-acoustic actuator and schematic diagram of thermoacoustic effect

    图  2  并联石墨烯热声激励器示意图、实物图和测量系统示意图

    Figure  2.  Schematic diagram, physical diagram and measurement system diagram of parallel graphene thermoacoustic exciter

    图  3  测量与理论结果对比

    Figure  3.  Comparison between measurement and theoretical results

    图  4  输入频率3 kHz、测试距离1 cm下不同结构的并联石墨烯热声激励器输出声压理论值与测量值对比

    Figure  4.  Comparison of the theoretical and measured output sound pressure values of parallel graphene thermo-acoustic actuator with different structures at fin=3 kHz, r=1 cm

    图  5  并联石墨烯热声激励器结构及其对输出声压和幅频特性的影响

    Figure  5.  The structure of the parallel graphene thermo-acoustic actuator and its influence on the output sound pressure and amplitude-frequency characteristic

    图  6  输入电频率3 kHz、输入电压25 V下,并联石墨烯热声激励器结构对输出声压和幅频特性的影响

    Figure  6.  The influence of the parallel graphene thermo-acoustic actuator’s structure on the output sound pressure and amplitude-frequency characteristic (fin=3 kHz, Uin=25 V)

    图  7  输入电压25 V、测试距离1 cm下,并联石墨烯热声激励器结构对输出声压和幅频特性的影响

    Figure  7.  The influence of the parallel graphene thermo-acoustic actuator’s structure on the output sound pressure and amplitude-frequency characteristic (Uin=25 V, r=1 cm)

  • [1] 中国科学院. 中国学科发展战略-新型飞行器中的关键力学问题[M]. 北京: 科学出版社, 2018.
    [2] LIN J C. Review of research on low-profile vortex generators to control boundary-layer separation[J]. Progress in Aerospace Sciences, 2002, 38(4-5): 389–420. doi: 10.1016/S0376-0421(02)00010-6
    [3] JIRASEK A. Vortex-generator model and its application to flow control[J]. Journal of Aircraft, 2005, 42(6): 1486–1491. doi: 10.2514/1.12220
    [4] ANUAR M M, NORDIN N, SHARIFF M Z F, et al. Effect of Employing Vortex Generator on Curve Diffuser Performance[J]. Journal of Advanced Mechanical Engineering Applications, 2021, 2(2): 53–60.
    [5] WANG J J, LI Y C, CHOI K S. Gurney flap—Lift enhancement, mechanisms and applications[J]. Progress in Aerospace Sciences, 2008, 44(1): 22–47. doi: 10.1016/j.paerosci.2007.10.001
    [6] MOUSAVI M, MASDARI M, TAHANI M. Power performance enhancement of vertical axis wind turbines by a novel gurney flap design[J]. Aircraft Engineering and Aerospace Technology, 2021. doi: 10.1108/aeat-02-2021-0052
    [7] KUMAR V, ALVI F. Efficient control of separation using microjets[C]//Proc of the 35th AIAA Fluid Dynamics Conference and Exhibit. 2005: 4879. doi: 10.2514/6.2005-4879
    [8] 王林, 罗振兵, 夏智勋, 等. 高速流场主动流动控制激励器研究进展[J]. 中国科学(技术科学), 2012, 42(10): 1103–1119. doi: 10.1360/ze2012-42-10-1103

    WANG L, LUO Z B, XIA Z X, et al. Review of actuators for high speed active flow control[J]. SCIENTIA SINICA Technologica, 2012, 42(10): 1103–1119. doi: 10.1360/ze2012-42-10-1103
    [9] MOREAU E. Airflow control by non-thermal plasma actuators[J]. Journal of Physics D: Applied Physics, 2007, 40(3): 605–636. doi: 10.1088/0022-3727/40/3/s01
    [10] ZHU Z H, FRADERA-SOLER P, JO W, et al. Numerical simulation of the flow around a square cylinder under plasma actuator control[J]. Physics of Fluids, 2021, 33(12): 123611. doi: 10.1063/5.0072081
    [11] 罗振兵, 夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展, 2005, 35(2): 221–234. doi: 10.3321/j.issn:1000-0992.2005.02.009

    LUO Z B, XIA Z X. Advances in synthetic jet technology and applications in flow control[J]. Advances in Mechanics, 2005, 35(2): 221–234. doi: 10.3321/j.issn:1000-0992.2005.02.009
    [12] PALUMBO A, DE LUCA L. Experimental and CFD characterization of a double-orifice synthetic jet actuator for flow control[J]. Actuators, 2021, 10(12): 326. doi: 10.3390/act10120326
    [13] GREGORY J W, GNANAMANICKAM E P, SULLIVAN J P, et al. Variable-frequency fluidic oscillator driven by a piezoelectric bender[J]. AIAA Journal, 2009, 47(11): 2717–2725. doi: 10.2514/1.44078
    [14] KARA K, KIM D, MORRIS P J. Flow-separation control using sweeping jet actuator[J]. AIAA Journal, 2018, 56(11): 4604–4613. doi: 10.2514/1.J056715
    [15] ZAMAN K B M Q, BAR-SEVER A, MANGALAM S M. Effect of acoustic excitation on the flow over a low- Re airfoil[J]. Journal of Fluid Mechanics, 1987, 182: 127. doi: 10.1017/s0022112087002271
    [16] NISHIOKA M, ASAI M, YOSHIDA S. Control of flow separation by acoustic excitation[J]. AIAA Journal, 1990, 28(11): 1909–1915. doi: 10.2514/3.10498
    [17] KURELEK J W, KOTSONIS M, YARUSEVYCH S. Transition in a separation bubble under tonal and broadband acoustic excitation[J]. Journal of Fluid Mechanics, 2018, 853: 1–36. doi: 10.1017/jfm.2018.546
    [18] ANDAN A D, LEE D J. Effect of external acoustic excitation on NACA0015 discrete tonal noise[J]. Applied Acoustics, 2018, 141: 374–381. doi: 10.1016/j.apacoust.2018.07.030
    [19] BERNARDINI C, BENTON S I, BONS J P. Understanding leading edge stall physics by acoustic excitation[C]//Proc of the 52nd Aerospace Sciences Meeting. 2014: 1125. doi: 10.2514/6.2014-1125
    [20] 朱奇亮, 高永卫, 叶正寅. 不同声激励方式对多段翼型升力特性的影响[J]. 航空工程进展, 2013, 4(2): 232–236. doi: 10.3969/j.issn.1674-8190.2013.02.016

    ZHU Q L, GAO Y W, YE Z Y. Influence of the different acoustic excitations on lift characteristic of a multi-element airfoil[J]. Advances in Aeronautical Science and Engineering, 2013, 4(2): 232–236. doi: 10.3969/j.issn.1674-8190.2013.02.016
    [21] WANG Y J, HE Z, LIU D W. Effect of acoustic excitation on flow asymmetry over slender body at high angles of attack[J]. Procedia Engineering, 2012, 31: 182–186. doi: 10.1016/j.proeng.2012.01.1010
    [22] TIAN H, XIE D, YANG Y, et al. Static behavior of a graphene-based sound-emitting device[J]. Nanoscale, 2012, 4(11): 3345–3349. doi: 10.1039/c2nr30417a
    [23] TIAN H, REN T L, XIE D, et al. Graphene-on-paper sound source devices[J]. ACS Nano, 2011, 5(6): 4878–4885. doi: 10.1021/nn2009535
    [24] 卞安华. 石墨烯薄膜声学特性及主动控制研究[D]. 苏州: 苏州大学, 2017.

    BIAN A H. Study on acoustic characteristics of graphene film and its application in active noise control[D]. Suzhou: Soochow University, 2017.
    [25] WANG Z G, CHEN Y F, LI P J, et al. Flexible graphene-based electroluminescent devices[J]. ACS Nano, 2011, 5(9): 7149–7154. doi: 10.1021/nn2018649
    [26] 邢倩荷. 石墨烯薄膜扬声器热声特性分析及应用[D]. 苏州: 苏州大学, 2018.

    XING Q H. Analysis of thermoacoustic characteristics of graphene film loudspeakers and its application[D]. Suzhou: Soochow University, 2018.
    [27] DASCHEWSKI M, BOEHM R, PRAGER J, et al. Physics of thermo-acoustic sound generation[J]. Journal of Applied Physics, 2013, 114(11): 114903. doi: 10.1063/1.4821121
    [28] 杜功焕, 朱哲民, 龚秀芬. 声学基础[M]. 3版. 南京: 南京大学出版社, 2012.
    [29] HU H P, ZHU T, XU J. Model for thermoacoustic emission from solids[J]. Applied Physics Letters, 2010, 96(21): 214101. doi: 10.1063/1.3435429
    [30] 黄伟. 基于热声效应的石墨烯扬声器研究[D]. 杭州: 浙江大学, 2020.

    HUANG W. Research on the graphene loudspeakers based on thermoacoustic effect[D]. Hangzhou: Zhejiang University, 2020.
    [31] SUK J W, KIRK K, HAO Y F, et al. Thermoacoustic sound generation from monolayer graphene for transparent and flexible sound sources[J]. Advanced Materials, 2012, 24(47): 6342–6347. doi: 10.1002/adma.201201782
  • 加载中
图(7)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  75
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 修回日期:  2021-12-21
  • 录用日期:  2022-03-07
  • 网络出版日期:  2023-06-09
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日