留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流动聚焦中液体锥形形态和流动结构实验研究

康鹏 郭鉴锋 穆恺 司廷

康鹏,郭鉴锋,穆恺,等. 流动聚焦中液体锥形形态和流动结构实验研究[J]. 实验流体力学,2022,36(2):74-81 doi: 10.11729/syltlx20210159
引用本文: 康鹏,郭鉴锋,穆恺,等. 流动聚焦中液体锥形形态和流动结构实验研究[J]. 实验流体力学,2022,36(2):74-81 doi: 10.11729/syltlx20210159
KANG P,GUO J F,MU K,et al. Experimental study on morphology and flow structure of liquid cone in flow focusing[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):74-81. doi: 10.11729/syltlx20210159
Citation: KANG P,GUO J F,MU K,et al. Experimental study on morphology and flow structure of liquid cone in flow focusing[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):74-81. doi: 10.11729/syltlx20210159

流动聚焦中液体锥形形态和流动结构实验研究

doi: 10.11729/syltlx20210159
基金项目: 国家自然科学基金(11902318);深圳市科技计划技术攻关项目(JSGG20180504165551779);中央高校基本科研业务费专项资金(WK2090050047)
详细信息
    作者简介:

    康鹏:(1999—),男,安徽亳州人,硕士研究生。研究方向:微纳尺度流动。通信地址:安徽省合肥市蜀山区黄山路443号(230027)。E-mail:iamkevin@mail.ustc.edu.cn

    通讯作者:

    E-mail:tsi@ustc.edu.cn

  • 中图分类号: O358

Experimental study on morphology and flow structure of liquid cone in flow focusing

  • 摘要: 流动聚焦(flow focusing)是一种制备单分散性微纳米尺度液滴、颗粒和胶囊的毛细流动技术,小孔上游稳定的液体锥形的形成是产生射流并高效制备微液滴的前提条件。采用量纲分析方法得到了被聚焦液体流量、驱动气体压差、毛细管与聚焦小孔距离对锥形稳定性的影响,利用吸气式流动聚焦装置观测了锥形界面形态及稳定性,验证了理论分析结果,通过调控主要过程参数获得了锥形稳定的参数区间。在被聚焦液体内部添加示踪粒子,采用高速摄影技术拍摄了流场图像并进行定量分析,探究了锥形内部的回流区结构及其变化规律,发现回流区的产生与锥形界面两侧的切向速度分布密切相关,被聚焦液体流量、驱动气体压差、毛细管与聚焦小孔距离对回流区的大小均具有显著影响。
  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of experimental device

    图  2  不同液体流量下的锥形形态图

    Figure  2.  Cone morphology diagram at different liquid flow rates

    图  3  不同气体压力差下的锥形形态图

    Figure  3.  Cone morphology diagram at different gas pressure differences

    图  4  不同管孔距离下的锥形形态图

    Figure  4.  Cone morphology diagram at different heights between the tube and the hole

    图  5  回流区结构图

    Figure  5.  Recirculation cell structure

    图  6  不同毛细管流量的回流区结构

    Figure  6.  Recirculation cell structure at different liquid flow rates

    图  7  不同气体压差下的回流区结构

    Figure  7.  Recirculation cell structure at different gas pressure differences

    图  8  不同管孔距离下的回流区结构

    Figure  8.  Recirculation cell structure at different heights between the tube and the hole

    表  1  实验材料的物理属性(20 ℃)

    Table  1.   Physical properties of the experimental materials(20 ℃)

    实验材料动力黏性系数
    μ/(Pa·s)
    密度
    ρ/(kg·m–3
    表面张力系数
    γ/(N·m–1
    去离子水1.01×10–3998.871.4×10–3
    空气1.79×10–51.29
    下载: 导出CSV
  • [1] BARRERO A,LOSCERTALES I G. Micro- and nano-particles via capillary flows[J]. Annual Review of Fluid Mechanics,2007,39:89-106. doi: 10.1146/annurev.fluid.39.050905.110245
    [2] GAÑÁN-CALVO A M,MONTANERO J M,MARTÍN-BANDERAS L,et al. Building functional materials for health care and pharmacy from microfluidic principles and Flow Focusing[J]. Advanced Drug Delivery Reviews,2013,65(11-12):1447-1469. doi: 10.1016/j.addr.2013.08.003
    [3] ZHU P G,WANG L Q. Passive and active droplet genera-tion with microfluidics: a review[J]. Lab on a Chip,2016,17(1):34-75. doi: 10.1039/c6lc01018k
    [4] SUN T M,ZHANG Y S,PANG B,et al. Engineered nanoparticles for drug delivery in cancer therapy[J]. Angewandte Chemie (International Ed in English),2014,53(46):12320-12364. doi: 10.1002/anie.201403036
    [5] LARYEA G N,NO S Y. Development of electrostatic pressure-swirl nozzle for agricultural applications[J]. Journal of Electrostatics,2003,57(2):129-142. doi: 10.1016/S0304-3886(02)00122-5
    [6] GAONKAR A G, VASISHT N, KHARE A R, et al. Microen-capsulation in the food industry: a practical implementation guide[M]. Amsterdam: Elsevier, 2014.
    [7] XU R X,HUANG J W,XU J S,et al. Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer[J]. Journal of Biomedical Optics,2009,14(3):034020. doi: 10.1117/1.3147424
    [8] LOSCERTALES I G,BARRERO A,GUERRERO I,et al. Micro/nano encapsulation via electrified coaxial liquid jets[J]. Science,2002,295(5560):1695-1698. doi: 10.1126/science.1067595
    [9] BOCK N,WOODRUFF M A,HUTMACHER D W,et al. Electrospraying, a reproducible method for production of polymeric microspheres for biomedical applications[J]. Poly-mers,2011,3(1):131-149. doi: 10.3390/polym3010131
    [10] GAÑÁN-CALVO A M. Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams[J]. Physical Review Letters,1998,80(2):285-288. doi: 10.1103/physrevlett.80.285
    [11] GAÑÁN-CALVO A,CASTRO-HERNÁNDEZ E,FLORES-MOSQUERA M,et al. Massive, generic, and controlled microencapsulation by flow focusing: some physicochemical aspects and new applications[J]. Journal of Flow Chemis-try,2015,5(1):48-54. doi: 10.1556/jfc-d-14-00022
    [12] DATTA S S,ABBASPOURRAD A,AMSTAD E,et al. 25th anniversary article: double emulsion templated solid micro-capsules: mechanics and controlled release[J]. Advanced Materials,2014,26(14):2205-2218. doi: 10.1002/adma.201305119
    [13] MARTÍN-BANDERAS L,FLORES-MOSQUERA M,RIESCO-CHUECA P,et al. Flow focusing: a versatile technology to produce size-controlled and specific-morphology microparticles[J]. Small,2005,1(7):688-692. doi: 10.1002/smll.200500087
    [14] GAÑÁN-CALVO A M,GONZÁLEZ-PRIETO R,RIESCO-CHUECA P,et al. Focusing capillary jets close to the continuum limit[J]. Nature Physics,2007,3(10):737-742. doi: 10.1038/nphys710
    [15] SI T,FENG H X,LUO X S,et al. Formation of steady compound cone-jet modes and multilayered droplets in a tri-axial capillary flow focusing device[J]. Microfluidics and Nanofluidics,2015,18(5-6):967-977. doi: 10.1007/s10404-014-1486-8
    [16] SI T,YIN C S,GAO P,et al. Steady cone-jet mode in compound-fluidic electro-flow focusing for fabricating multi-compartment microcapsules[J]. Applied Physics Letters,2016,108(2):021601. doi: 10.1063/1.4939632
    [17] GAÑÁN-CALVO A M,RIESCO-CHUECA P. Jetting–dripping transition of a liquid jet in a lower viscosity co-flowing immiscible liquid: the minimum flow rate in flow focusing[J]. Journal of Fluid Mechanics,2006,553:75-84. doi: 10.1017/s0022112006009013
    [18] GAÑÁN-CALVO A M,LÓPEZ-HERRERA J M,RIESCO-CHUECA P. The combination of electrospray and flow focusing[J]. Journal of Fluid Mechanics,2006,566:421-445. doi: 10.1017/s0022112006002102
    [19] 司廷,田瑞军,李广滨,等. 电场作用下流动聚焦的实验研究[J]. 力学学报,2011,43(6):1030-1036. doi: 10.6052/0459-1879-2011-6-lxxb2011-156

    SI T,TIAN R J,LI G B,et al. Experimental study of the flow focusing under an electric field[J]. Chinese Journal of Theoretical and Applied Mechanics,2011,43(6):1030-1036. doi: 10.6052/0459-1879-2011-6-lxxb2011-156
    [20] UTADA A S,LORENCEAU E,LINK D R,et al. Mono-disperse double emulsions generated from a microcapillary device[J]. Science,2005,308(5721):537-541. doi: 10.1126/science.1109164
    [21] 陈晓东,胡国庆. 微流控器件中的多相流动[J]. 力学进展,2015,45(1):55-110.

    CHEN X D,HU G Q. Multiphase flow in microfluidic devices[J]. Advances in Mechanics,2015,45(1):55-110.
    [22] MU K,QIAO R,GUO J F,et al. Parametric study on stability and morphology of liquid cone in flow focusing[J]. International Journal of Multiphase Flow,2021,135:103507. doi: 10.1016/j.ijmultiphaseflow.2020.103507
    [23] 穆恺,司廷. 毛细流动聚焦的实验方法及过程控制[J]. 实验流体力学,2020,34(2):46-56. doi: 10.11729/syltlx20190146

    MU K,SI T. Experimental method and process control of capillary flow focusing[J]. Journal of Experiments in Fluid Mechanics,2020,34(2):46-56. doi: 10.11729/syltlx20190146
    [24] 李广滨. 复合流动聚焦的实验和理论研究[D]. 合肥: 中国科学技术大学, 2016.

    LI G B. Experimental and theoretical investigation on compound flow focusing[D]. Hefei: University of Science and Technology of China, 2016.
    [25] SI T,LI F,YIN X Y,et al. Modes in flow focusing and instability of coaxial liquid–gas jets[J]. Journal of Fluid Mechanics,2009,629:1-23. doi: 10.1017/s0022112009006211
    [26] MU K,DING H,SI T. Experimental and numerical investigations on interface coupling of coaxial liquid jets in co-flow focusing[J]. Physics of Fluids,2020,32(4):042103. doi: 10.1063/5.0002102
    [27] HERRADA M A,GAÑÁN-CALVO A M,OJEDA-MONGE A,et al. Liquid flow focused by a gas: Jetting, dripping, and recirculation[J]. Physical Review E,2008,78(3):036323. doi: 10.1103/physreve.78.036323
    [28] ROSELL-LLOMPART J,GAÑÁN-CALVO A M. Turbu-lence in pneumatic flow focusing and flow blurring regimes[J]. Physical Review E,2008,77(3):036321. doi: 10.1103/physreve.77.036321
    [29] GORDILLO J M,PÉREZ-SABORID M,GAÑÁN-CALVO A M. Linear stability of co-flowing liquid–gas jets[J]. Journal of Fluid Mechanics,2001,448:23-51. doi: 10.1017/s0022112001005729
    [30] GAÑÁN-CALVO A M. Absolute instability of a viscous hollow jet[J]. Physical Review E,2007,75(2):027301. doi: 10.1103/physreve.75.027301
    [31] SI T,LI F,YIN X Y,et al. Spatial instability of coflowing liquid-gas jets in capillary flow focusing[J]. Physics of Fluids,2010,22(11):112105. doi: 10.1063/1.3490066
    [32] GAÑÁN-CALVO A M,HERRADA M A,GARSTECKI P. Bubbling in unbounded coflowing liquids[J]. Physical Review Letters,2006,96(12):124504. doi: 10.1103/physrevlett.96.124504
    [33] LI S B,YANG R,MU K,et al. Thermal effects on the instability of coaxial liquid jets in the core of a gas stream[J]. Physics of Fluids,2019,31(3):032106. doi: 10.1063/1.5087029
    [34] 李帅兵,杨睿,罗喜胜,等. 气流作用下同轴带电射流的不稳定性研究[J]. 力学学报,2017,49(5):997-1007. doi: 10.6052/0459-1879-17-082

    LI S B,YANG R,LUO X S,et al. Instability study of an electrified coaxial jet in a coflowing gas stream[J]. Chinese Journal of Theoretical and Applied Mechanics,2017,49(5):997-1007. doi: 10.6052/0459-1879-17-082
    [35] 李帅兵,司廷. 射流破碎的线性不稳定性分析方法[J]. 空气动力学学报,2019,37(3):356-372.

    LI S B,SI T. Advances on linear instability analysis method of jet breakup[J]. Acta Aerodynamica Sinica,2019,37(3):356-372.
    [36] QIAO R,MU K,LUO X S,et al. Instability and energy budget analysis of viscous coaxial jets under a radial thermal field[J]. Physics of Fluids,2020,32(12):122103. doi: 10.1063/5.0025880
    [37] LI G B,LUO X S,SI T,et al. Temporal instability of coflowing liquid-gas jets under an electric field[J]. Physics of Fluids,2014,26(5):054101. doi: 10.1063/1.4875109
    [38] 李广滨,司廷,尹协振. 电场作用下无黏聚焦射流的时间不稳定性研究[J]. 力学学报,2012,44(5):876-883. doi: 10.6052/0459-1879-12-032

    LI G B,SI T,YIN X Z. Temporal instability study of inviscid focused jets under an electric field[J]. Chinese Journal of Theoretical and Applied Mechanics,2012,44(5):876-883. doi: 10.6052/0459-1879-12-032
    [39] 司廷,李广滨,尹协振. 流动聚焦及射流不稳定性[J]. 力学进展,2017,47(1):178-226.

    SI T,LI G B,YIN X Z. Flow focusing and jet instability[J]. Advances in Mechanics,2017,47(1):178-226.
    [40] MU K,DING H,SI T. Instability analysis of the cone–jet flow in liquid-driven flow focusing[J]. Microfluidics and Nanofluidics,2018,22(12):1-10. doi: 10.1007/s10404-018-2158-x
    [41] YANG C Y,QIAO R,MU K,et al. Manipulation of jet break up length and droplet size in axisymmetric flow focusing upon actuation[J]. Physics of Fluids,2019,31(9):091702. doi: 10.1063/1.5122761
    [42] MU K,SI T,LI E Q,et al. Numerical study on droplet generation in axisymmetric flow focusing upon actuation[J]. Physics of Fluids,2018,30(1):012111. doi: 10.1063/1.5009601
    [43] VEGA E J,MONTANERO J M,HERRADA M A,et al. Global and local instability of flow focusing: the influence of the geometry[J]. Physics of Fluids,2010,22(6):064105. doi: 10.1063/1.3450321
    [44] GAÑÁN-CALVO A M,FERRERA C,TORREGROSA M,et al. Experimental and numerical study of the recirculation flow inside a liquid meniscus focused by air[J]. Microfluidics and Nanofluidics,2011,11(1):65-74. doi: 10.1007/s10404-011-0774-9
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  2404
  • HTML全文浏览量:  222
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-25
  • 修回日期:  2022-01-13
  • 录用日期:  2022-02-08
  • 网络出版日期:  2022-05-26
  • 刊出日期:  2022-05-19

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日