留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机自主滑翔中的模式切换逻辑研究

陈杰 史志伟 姚张奕 殷镇权 葛增冉

陈杰, 史志伟, 姚张奕, 等. 无人机自主滑翔中的模式切换逻辑研究[J]. 实验流体力学, 2023, 37(3): 113-123 doi: 10.11729/syltlx20210165
引用本文: 陈杰, 史志伟, 姚张奕, 等. 无人机自主滑翔中的模式切换逻辑研究[J]. 实验流体力学, 2023, 37(3): 113-123 doi: 10.11729/syltlx20210165
CHEN J, SHI Z W, YAO Z Y, et al. Research on mode switch logic in Unmanned Aerial Vehicle autonomous soaring[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 113-123 doi: 10.11729/syltlx20210165
Citation: CHEN J, SHI Z W, YAO Z Y, et al. Research on mode switch logic in Unmanned Aerial Vehicle autonomous soaring[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 113-123 doi: 10.11729/syltlx20210165

无人机自主滑翔中的模式切换逻辑研究

doi: 10.11729/syltlx20210165
详细信息
    作者简介:

    陈杰:(1994—),男,江苏东台人,博士研究生。研究方向:飞行器飞行力学与控制。通信地址:江苏省南京市秦淮区御道街29号南京航空航天大学航空学院非定常空气动力学与流动控制工信部重点实验室(210016)。E-mail:852484939@qq.com

    通讯作者:

    E-mail:szwam@nuaa.edu.cn

  • 中图分类号: V19

Research on mode switch logic in Unmanned Aerial Vehicle autonomous soaring

  • 摘要: 无人机可以通过自主滑翔从自然环境里的热上升气流中获取能量,提高自身的续航能力。在此期间,模式切换是无人机自主滑翔的关键。针对该问题,设计了基于七孔探针和嵌入式技术的气流感知系统,该系统可测量流动角高达72°的气流方向和速度。基于气流感知系统,设计了控制无人机自主进入和脱离滑翔模式的模式切换逻辑。通过在风洞中模拟热上升气流,利用风洞虚拟飞行试验验证了所设计模式切换逻辑的可行性。试验结果表明:在不同速度的热上升气流作用下,基于气流感知系统设计的模式切换逻辑都能够使无人机自主进入和脱离滑翔模式,且在不同大小的滚转角指令下,模式切换逻辑都能够使无人机脱离滑翔模式。
  • 图  1  七孔探针结构外形

    Figure  1.  Configuration of seven-hole probe

    图  2  大角度下探针头部流场

    Figure  2.  Flow around the probe at high flow angle

    图  3  校准坐标系

    Figure  3.  Calibration coordinate system

    图  4  数字式压力传感器

    Figure  4.  Digital pressure sensor

    图  5  数据采集处理模块实物图

    Figure  5.  Photo of data acquisition and processing module

    图  7  热上升气流模拟装置设计图和实物图

    Figure  7.  Design drawing and photo of updraft simulation device

    图  6  试验模型设计图和实物图

    Figure  6.  Design drawing and photo of test model

    图  8  热上升气流三维图

    Figure  8.  Three-dimensional diagram of thermal updraft

    图  9  飞行器飞经热上升气流区域时迎角的变化情况

    Figure  9.  Change in angle of attack when an aircraft flying through a thermal updraft

    图  10  模式切换逻辑

    Figure  10.  Mode switch logic

    图  11  虚拟飞行试验模型及安装

    Figure  11.  Virtual flight test model and installation

    图  12  三自由度机构

    Figure  12.  3 DOF structure

    图  13  小流动角下(7区)迎角系数曲线

    Figure  13.  Pressure coefficient curve of angle of attack at small angle (zone 7)

    图  14  小流动角下(7区)侧滑角系数曲线

    Figure  14.  Pressure coefficient curve of side slip angle at small angle (zone 7)

    图  15  大流动角下(1区)俯仰系数曲线

    Figure  15.  Pitch pressure coefficient curve at high angle (zone 1)

    图  16  滚转角系数曲线(1区,θ = 60°)

    Figure  16.  Roll pressure coefficient curve (zone 1, θ = 60°)

    图  17  上升气流I的虚拟飞行试验结果

    Figure  17.  Experimental results of virtual flight of updraft I

    图  18  上升气流Ⅱ的虚拟飞行试验结果

    Figure  18.  Experimental results of virtual flight of updraft Ⅱ

    图  19  上升气流Ⅲ的虚拟飞行试验结果

    Figure  19.  Experimental results of virtual flight of updraft Ⅲ

    图  20  滚转角指令和滚转角随时间的变化情况

    Figure  20.  Change of roll angle command and roll angle with time

    表  1  试验模型几何参数

    Table  1.   Geometric parameters of the test model

    几何参数
    参考面积S/m20.095
    参考展长L/m1
    平均气动弦长c/m0.16
    质心位置内翼根弦长35%处
    下载: 导出CSV

    表  2  热上升气流速度标定

    Table  2.   Calibration of updraft velocity

    占空比/%电压/V电流/A上升气流速度/(m·s−1)
    7.5002500
    7.750254.42.7
    8.000259.24.9
    8.2502517.26.6
    8.5002526.28.0
    8.8752534.29.0
    9.0002544.19.8
    下载: 导出CSV

    表  3  七孔探针校准曲线拟合的标准偏差

    Table  3.   Standard deviation of calibration curve fitting of seven hole probe

    内区外区
    标准偏差标准偏差
    σ(α) 0.15° σ(θ) 0.46°
    σ(β) 0.11° σ(ϕ) 0.50°
    $\dfrac{\sigma (p_0)}{(p_0-p_\infty )} $ 0.46% $\dfrac{\sigma (p_0)}{(p_0-p_\infty )} $ 0.77%
    $\dfrac{\sigma (p_0-p_\infty)}{(p_0-p_\infty )} $ 1.29% $\dfrac{\sigma (p_0-p_\infty)}{(p_0-p_\infty )} $ 2.25%
    下载: 导出CSV
  • [1] AUSTIN R. Unmanned aircraft systems: UAVs design, development and deployment[M]. Chichester: John Wiley & Sons, Ltd., 2010. doi: 10.1002/9780470664797
    [2] KOCHAN A. Automation in the sky[J]. Industrial Robot:an International Journal, 2005, 32(6): 468–471. doi: 10.1108/01439910510629181
    [3] WEATHERINGTON D, DEPUTY U. Unmanned aircraft systems roadmap 2005-2030[R]. OUSD(AT&L), 2005.
    [4] VAN BLYENBURGH P. UAVs: an overview[J]. Air & Space Europe, 1999, 1(5-6): 43–47. doi: 10.1016/S1290-0958(00)88869-3
    [5] 刘国春. 大展弦比机翼气动外形设计方案研究[J]. 飞机设计, 2011, 31(3): 9–12, 36. doi: 10.3969/j.issn.1673-4599.2011.03.003

    LIU G C. Research on design of high aspect wing shape[J]. Aircraft Design, 2011, 31(3): 9–12, 36. doi: 10.3969/j.issn.1673-4599.2011.03.003
    [6] 陈学孔, 郭正, 易凡, 等. 低雷诺数翼型的气动外形优化设计[J]. 空气动力学学报, 2014, 32(3): 300–307. doi: 10.7638/kqdlxxb-2012.0134

    CHEN X K, GUO Z, YI F, et al. Aerodynamic shape optimization and design of airfoils with low Reynolds number[J]. Acta Aerodynamica Sinica, 2014, 32(3): 300–307. doi: 10.7638/kqdlxxb-2012.0134
    [7] KLESH A T, KABAMBA P T. Solar-powered aircraft: energy-optimal path planning and perpetual endurance[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1320–1329. doi: 10.2514/1.40139
    [8] 王红波, 祝小平, 周洲, 等. 太阳能无人机螺旋桨滑流气动特性分析[J]. 西北工业大学学报, 2015, 33(6): 913–920. doi: 10.3969/j.issn.1000-2758.2015.06.008

    WANG H B, ZHU X P, ZHOU Z, et al. Aerodynamic investigation on propeller slipstream flows for solar powered airplanes[J]. Journal of Northwestern Polytechnical University, 2015, 33(6): 913–920. doi: 10.3969/j.issn.1000-2758.2015.06.008
    [9] RAYLEIGH. The soaring of birds[J]. Nature, 1883, 27(701): 534–535. doi: 10.1038/027534a0
    [10] BENCATEL R, TASSO DE SOUSA J, GIRARD A. Atmospheric flow field models applicable for aircraft endurance extension[J]. Progress in Aerospace Sciences, 2013, 61: 1–25. doi: 10.1016/j.paerosci.2013.03.001
    [11] CONE C D. Thermal soaring of birds[J]. American Scientist, 1962, 50(1): 180–209.
    [12] ALLEN M. Updraft model for development of autonomous soaring uninhabited air vehicles[C]//Proc of the 44th AIAA Aerospace Sciences Meeting and Exhibit. 2006: 1510. doi: 10.2514/6.2006-1510
    [13] ALLEN M, LIN V. Guidance and control of an autonomous soaring vehicle with flight test results[C]//Proc of the 45th AIAA Aerospace Sciences Meeting and Exhibit. 2007. doi: 10.2514/6.2007-867
    [14] WHARINGTON J. Autonomous control of soaring aircraft by reinforcement learning[D]. Melbourne: Royal Melbourne Institute of Technology, 1998.
    [15] KAHVECI N E, IOANNOU P A, MIRMIRANI M D. Adaptive LQ control with anti-windup augmentation to optimize UAV performance in autonomous soaring applications[J]. IEEE Transactions on Control Systems Technology, 2008, 16(4): 691–707. doi: 10.1109/TCST.2007.908207
    [16] EDWARDS D. Implementation details and flight test results of an autonomous soaring controller[C]//Proc of the AIAA Guidance, Navigation and Control Conference and Exhibit. 2008. doi: 10.2514/6.2008-7244
    [17] 吴吉昌, 李成勤, 朱俊强. 七孔探针及其在叶栅二次流动测量中的应用[J]. 航空动力学报, 2011, 26(8): 1879–1886. doi: 10.13224/j.cnki.jasp.2011.08.033

    WU J C, LI C Q, ZHU J Q. Seven-hole probe and its application in the secondary flow for a high-load compressor cascade[J]. Journal of Aerospace Power, 2011, 26(8): 1879–1886. doi: 10.13224/j.cnki.jasp.2011.08.033
    [18] VENKATESWARA BABU C, GOVARDHAN M, SITARAM N. A method of calibration of a seven-hole pressure probe for measuring highly three-dimensional flows[J]. Measurement Science and Technology, 1998, 9(3): 468–476. doi: 10.1088/0957-0233/9/3/022
    [19] 余莉, 滕海山, 明晓. 利用七孔探针对降落伞流场的试验测量研究[J]. 中国空间科学技术, 2007, 27(5): 65–71. doi: 10.3321/j.issn:1000-758X.2007.05.011

    YU L, TENG H S, MING X. Seven-hole probe measurement on parachute flow field[J]. Chinese Space Science and Technology, 2007, 27(5): 65–71. doi: 10.3321/j.issn:1000-758X.2007.05.011
    [20] MEIER L, TANSKANEN P, HENG L, et al. Pixhawk: a micro aerial vehicle design for autonomous flight using onboard computer vision[J]. Autonomous Robots, 2012, 33(1): 21–39. doi: 10.1007/s10514-012-9281-4
    [21] 王文奎, 石柏军. 低速风洞洞体设计[J]. 机床与液压, 2008, 36(5): 93–95.

    WANG W K, SHI B J. The design of low speed wind tunnel[J]. Machine Tool & Hydraulics, 2008, 36(5): 93–95.
    [22] 张运波. PWM信号的软件实现方法[J]. 微计算机信息, 2002, 18(10): 46–47, 50. doi: 10.3969/j.issn.1008-0570.2002.10.021

    ZHANG Y B. The software implementation method of PWM signal[J]. Control & Automation, 2002, 18(10): 46–47, 50. doi: 10.3969/j.issn.1008-0570.2002.10.021
    [23] ALLEN M. Autonomous soaring for improved endurance of a small uninhabitated air vehicle[C]//Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005: 1025. doi: 10.2514/6.2005-1025
    [24] CHEN J, SHI Z W, ZHOU M B, et al. Modeling and simulation of UAV static soaring based on multi-hole probe[J]. AIP Advances, 2021, 11(7): 075309. doi: 10.1063/5.0055276
    [25] LAWRENCE F, MILLS B. Status update of the AEDC wind tunnel Virtual Flight Testing development program[C]//Proc of the 40th AIAA Aerospace Sciences Meeting & Exhibit. 2002: 168. doi: 10.2514/6.2002-168
    [26] COCHRANE J. MacCready theory with uncertain lift and limited altitude[J]. Technical Soaring, 1999, 23: 88–96.
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  168
  • HTML全文浏览量:  51
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-28
  • 修回日期:  2022-03-25
  • 录用日期:  2022-04-07
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日