留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冰层中Lamb波传播特性的数值模拟和实验研究

张鸿健 张晏鑫 熊建军 赵照 冉林 易贤

张鸿健, 张晏鑫, 熊建军, 等. 冰层中Lamb波传播特性的数值模拟和实验研究[J]. 实验流体力学, 2023, 37(2): 68-77 doi: 10.11729/syltlx20210170
引用本文: 张鸿健, 张晏鑫, 熊建军, 等. 冰层中Lamb波传播特性的数值模拟和实验研究[J]. 实验流体力学, 2023, 37(2): 68-77 doi: 10.11729/syltlx20210170
ZHANG H J, ZHANG Y X, XIONG J J, et al. Numerical simulation and experimental research of Lamb wave propagation characteristics in ice[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 68-77 doi: 10.11729/syltlx20210170
Citation: ZHANG H J, ZHANG Y X, XIONG J J, et al. Numerical simulation and experimental research of Lamb wave propagation characteristics in ice[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 68-77 doi: 10.11729/syltlx20210170

冰层中Lamb波传播特性的数值模拟和实验研究

doi: 10.11729/syltlx20210170
基金项目: 国家重大科技专项(J2019-Ⅲ-0010-0054);国家自然科学基金重点项目(12132019)
详细信息
    作者简介:

    张鸿健:(1996—),男,福建泉州人,硕士研究生。研究方向:飞机结冰与防除冰。通信地址:四川省绵阳市涪城区二环路南段6号13信箱(621000)。E-mail:zhanghj_96@163.com

    通讯作者:

    E-mail:yixian_2000@163.com

  • 中图分类号: T391.9

Numerical simulation and experimental research of Lamb wave propagation characteristics in ice

  • 摘要: 作为最常用的超声导波之一,Lamb波具有能量集中、传播范围广、沿程衰减小等特点,可以拓展应用于结冰探测领域。为探明Lamb波在冰层中的传播规律,基于Lamb波探冰实验平台构建物理模型,以COMSOL Multiphysics软件为计算工具,数值模拟了不同厚度、不同长度冰层中的Lamb波传播情况。在此基础上,搭建了Lamb波探冰实验平台,开展了无冰铝板和覆冰铝板Lamb波传播实验。结合数值模拟和实验结果,明确了温度、冰层几何特性、液态水对Lamb波传播特性的影响规律。结果表明:温度越低,Lamb波传播群速度越快;在一定冰层厚度范围内,接收端压电片电压幅值衰减量随冰层厚度增大而增大;随着冰层长度增加,接收端Lamb波B1模态时间延迟量线性增大;液态水仅对Lamb波A0模态产生影响,对S0模态影响不大。实验和数值模拟结果具有较好的一致性,为Lamb波结冰探测技术提供了理论参考。
  • 图  1  Lamb波传播模型

    Figure  1.  The propagation model of Lamb wave

    图  2  Lamb波频散曲线

    Figure  2.  The dispersion curve of Lamb wave

    图  3  无冰铝板接收端电压时域波形图

    Figure  3.  The time domain waveform of receiver voltage in aluminum plate

    图  4  无冰铝板接收端仿真信号时频图

    Figure  4.  The time-frequency diagram of simulated signal of receiver in aluminum plate

    图  5  接收端仿真信号波形参数随冰层厚度的变化

    Figure  5.  The variation trend of waveform parameters of simulated signal at receiver with ice thickness

    图  6  接收端仿真信号波形参数随冰层长度的变化

    Figure  6.  The variation trend of waveform parameters of simulated signal at receiver with ice length

    图  7  Lamb波探冰实验平台示意图

    Figure  7.  The schematic diagram of Lamb wave ice detection platform

    图  8  Lamb波探冰实验平台

    Figure  8.  The Lamb wave ice detection platform

    图  9  无冰铝板接收端时域波形图

    Figure  9.  The time domain waveform of receiver voltage in aluminum plate

    图  10  无冰铝板接收端功率谱图

    Figure  10.  The power spectrum of receiver voltage in aluminum plate

    图  11  无冰铝板接收端实测信号时频图

    Figure  11.  The time-frequency diagram of measured signal of receiver in aluminum plate

    图  12  不同温度下无冰铝板接收端时域波形图

    Figure  12.  The time domain waveform of receiver voltage in aluminum plate at different temperatures

    图  13  接收信号波形参数随环境温度的变化

    Figure  13.  The variation trend of received signal waveform parameters with environment temperature

    图  14  不同厚度冰层的实物照片

    Figure  14.  The ice layers with different thickness

    图  15  接收端信号波形参数随冰层厚度的变化

    Figure  15.  The variation trend of signal waveform parameters at receiver with ice thickness

    图  16  不同长度冰层的实物照片

    Figure  16.  The ice layers with different length

    图  17  接收端信号波形参数随冰层长度的变化

    Figure  17.  The variation trend of signal waveform parameters at receiver with ice length

    图  18  液态水负载铝板中的接收端时域波形图

    Figure  18.  The time domain waveform of receiver voltage in aluminum plate loaded with liquid water

    图  19  300 kHz激励频率下Lamb波波结构图

    Figure  19.  The structure diagram of Lamb wave at 300 kHz frequency

  • [1] 易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 绵阳: 中国空气动力研究与发展中心研究生部, 2007.

    YI X. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang: China Aerodynamics Research and Development Center Graduate School, 2007.
    [2] 林贵平, 卜雪琴, 申晓斌, 等. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社, 2016.
    [3] 张杰, 周磊, 张洪, 等. 飞机结冰探测技术[J]. 仪器仪表学报, 2006, 27(12): 1578–1586. doi: 10.19650/j.cnki.cjsi.2006.12.005

    ZHANG J, ZHOU L, ZHANG H, et al. Aircraft icing detection technology[J]. Chinese Journal of Scientific Instrument, 2006, 27(12): 1578–1586. doi: 10.19650/j.cnki.cjsi.2006.12.005
    [4] 叶林. 基于压电器件的冰传感器[J]. 仪表技术与传感器, 2001(9): 6–7,44. doi: 10.3969/j.issn.1002-1841.2001.09.003

    YE L. A new ice sensor based on piezoelectric device[J]. Instrument Technique and Sensor, 2001(9): 6–7,44. doi: 10.3969/j.issn.1002-1841.2001.09.003
    [5] 王华, 王以伦, 张滨华. 基于磁致伸缩原理的结冰传感器设计理论[J]. 电工技术学报, 2003, 18(6): 77–79,11. doi: 10.19595/j.cnki.1000-6753.tces.2003.06.016

    WANG H, WANG Y L, ZHANG B H. Theory of designing ice detector based on magnetostriction[J]. Transactions of China Electrotechnical Society, 2003, 18(6): 77–79,11. doi: 10.19595/j.cnki.1000-6753.tces.2003.06.016
    [6] 张龙浩. 光纤阵列式结冰探测系统的研究[D]. 武汉: 华中科技大学, 2013.

    ZHANG L H. The research of optical fiber array icing detection system[D]. Wuhan: Huazhong University of Science and Technology, 2013.
    [7] IKIADES A A, ARMSTRONG D J, HARE G G, et al. Fiber optic sensor technology for air conformal ice detection[C]//Proc SPIE 5272, Industrial and Highway Sensors Technology. 2004, 5272: 357-368. doi: 10.1117/12.516910
    [8] LIU Y, BOND L J, HU H. Ultrasonic-attenuation-based technique for ice characterization pertinent to aircraft icing phenomena[J]. AIAA Journal, 2017, 55(5): 1602–1609. doi: 10.2514/1.j055500
    [9] LIU Y, CHEN W L, BOND L J, et al. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies[J]. AIP Conference Proceedings, 2014, 1581(1): 1757–1764. doi: 10.1063/1.4865036
    [10] LIU Y, CHEN W L, BOND L J, et al. A feasibility study to identify ice types by measuring attenuation of ultrasonic waves for aircraft icing detection[C]//Proceedings of ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting Collocated With the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. 2014 doi: 10.1115/FEDSM2014-21227
    [11] 吴荣兴, 胡海柯. 表面波飞机结冰传感器的研究[J]. 压电与声光, 2011, 33(5): 679–682,686. doi: 10.3969/j.issn.1004-2474.2011.05.001

    WU R X, HU H K. Study on surface acoustic wave aircraft ice sensor[J]. Piezoelectrics & Acoustooptics, 2011, 33(5): 679–682,686. doi: 10.3969/j.issn.1004-2474.2011.05.001
    [12] 江城, 何世堂, 李红浪, 等. 声表面波飞机结冰传感器灵敏度及实验研究[J]. 压电与声光, 2009, 31(4): 458–460,463. doi: 10.3969/j.issn.1004-2474.2009.04.002

    JIANG C, HE S T, LI H L, et al. Study of SAW aircraft ice detector sensitivity[J]. Piezoelectrics & Acoustooptics, 2009, 31(4): 458–460,463. doi: 10.3969/j.issn.1004-2474.2009.04.002
    [13] PALACIOS J, ZHU Y, SMITH E, et al. Ultrasonic shear and lamb wave interface stress for helicopter rotor de-icing purposes[C]//Proc of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2006: 2282. doi: 10.2514/6.2006-2282
    [14] 张雨杏. 基于SH波的旋翼结冰冰层厚度检测机理研究[D]. 南京: 南京航空航天大学, 2018.

    ZHANG Y X. Study on the mechanism of utilizing SH guided wave in rotors’ ice thickness detection[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
    [15] LAMB H. On waves in an elastic plate[J]. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 1917, 93(648): 114–128. doi: 10.1098/rspa.1917.0008
    [16] 徐春广, 李卫彬. 无损检测超声波理论[M]. 北京: 科学出版社, 2020.
    [17] 张海燕, 他得安, 刘镇清. 层状各向异性复合板中的兰姆波[M]. 北京: 科学出版社, 2008.
    [18] VIKTOROV I A. Calculation of phase velocities of surface-waves on boundary of a solid half-space with a liquid layer[J]. Soviet Physics Acoustics-USSR, 1977, 23(6): 541–542.
    [19] ROSE J L. Ultrasonic guided waves in solid media[M]. Cambridge: Cambridge University Press, 2014. doi: 10.1017/cbo9781107273610
    [20] LOWE M J S. Matrix techniques for modeling ultrasonic waves in multilayered media[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1995, 42(4): 525–542. doi: 10.1109/58.393096
    [21] NAYFEH A H. The general problem of elastic wave propagation in multilayered anisotropic media[J]. The Journal of the Acoustical Society of America, 1991, 89(4): 1521–1531. doi: 10.1121/1.400988
    [22] 刘镇清. 无损检测中的超声兰姆波[J]. 无损检测, 1999(9): 409–413,423.

    LIU Z Q. Ultrasonic lamb waves in nondestructive testing[J]. Nondestructive Testing, 1999(9): 409–413,423.
    [23] 刘镇清, 张海燕. 固–液–固3层结构板中超声兰姆波的频散特性[J]. 声学技术, 2001, 20(2): 88–91. doi: 10.3969/j.issn.1000-3630.2001.02.013

    LIU Z Q, ZHANG H Y. Dispersion property of ultrasonic Lamb wave in solid-liquid-solid three-layered structure[J]. Technical Acoustics, 2001, 20(2): 88–91. doi: 10.3969/j.issn.1000-3630.2001.02.013
    [24] 郑祥明, 赵玉珍, 史耀武. 兰姆波频散曲线的计算[J]. 无损检测, 2003, 25(2): 66–68. doi: 10.3969/j.issn.1000-6656.2003.02.002

    ZHENG X M, ZHAO Y Z, SHI Y W. Calculation for lamb wave dispersion curves[J]. Nondestructive Testing, 2003, 25(2): 66–68. doi: 10.3969/j.issn.1000-6656.2003.02.002
    [25] 白天. 基于压电材料的结冰探测与除冰方法[D]. 南京: 南京航空航天大学, 2015.
    [26] 吴荣兴, 李建中, 于兰珍, 等. 兰姆波飞机结冰传感器的最佳工作模态研究[J]. 工业安全与环保, 2016, 42(7): 8–10,14. doi: 10.3969/j.issn.1001-425X.2016.07.003

    WU R X, LI J Z, YU L Z, et al. Analysis of optimal functioning modes of lamb wave aircraft ice sensor[J]. Industrial Safety and Environmental Protection, 2016, 42(7): 8–10,14. doi: 10.3969/j.issn.1001-425X.2016.07.003
    [27] 朱程香, 张玉雷, 朱春玲, 等. 风力机超声导波结冰探测方法的数值和试验研究[J]. 中国科学(物理学 力学 天文学), 2016, 46(12): 56–63. doi: 10.1360/SSPMA2016-00290

    ZHU C X, ZHANG Y L, ZHU C L, et al. Numerical and experimental study on icing detection of wind turbine blade based on ultrasonic guided wave[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2016, 46(12): 56–63. doi: 10.1360/SSPMA2016-00290
    [28] 肖龙. 基于超声导波的旋翼结冰冰层检测机理研究[D]. 南京: 南京航空航天大学, 2017.
  • 加载中
图(19)
计量
  • 文章访问数:  469
  • HTML全文浏览量:  202
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-01
  • 修回日期:  2021-11-13
  • 录用日期:  2021-12-24
  • 网络出版日期:  2022-08-29
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日