留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

汽车外后视镜造型对气动和噪声影响的风洞实验研究

付威 王勋年 李勇

付威, 王勋年, 李勇. 汽车外后视镜造型对气动和噪声影响的风洞实验研究[J]. 实验流体力学, 2023, 37(3): 92-106 doi: 10.11729/syltlx20210187
引用本文: 付威, 王勋年, 李勇. 汽车外后视镜造型对气动和噪声影响的风洞实验研究[J]. 实验流体力学, 2023, 37(3): 92-106 doi: 10.11729/syltlx20210187
FU W, WANG X N, LI Y. Wind tunnel experimental study on aerodynamics and noise based on the influence of automobile rearview mirror shapes[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 92-106 doi: 10.11729/syltlx20210187
Citation: FU W, WANG X N, LI Y. Wind tunnel experimental study on aerodynamics and noise based on the influence of automobile rearview mirror shapes[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 92-106 doi: 10.11729/syltlx20210187

汽车外后视镜造型对气动和噪声影响的风洞实验研究

doi: 10.11729/syltlx20210187
基金项目: 气动噪声控制重点实验室开放基金项目(1901ANCL20190105)
详细信息
    作者简介:

    付威:(1997—),男,江西南昌人,硕士研究生。研究方向:汽车风噪与空气动力学。通信地址:浙江省温州市瓯海区茶山街道温州大学南校区机电工程学院6B105(325035)。E-mail:fw_1226@126.com

    通讯作者:

    E-mail:yli@wzu.edu.cn

  • 中图分类号: V211.7; U463.85

Wind tunnel experimental study on aerodynamics and noise based on the influence of automobile rearview mirror shapes

  • 摘要: 为降低由汽车后视镜带来的气动噪声,本文以一简化汽车外后视镜模型为基础模型,提出3个不同造型改进方案:A造型模型镜身倾斜15°;B造型模型镜身倾斜30°;C造型模型将原圆柱形底座改为椭柱形底座。对4款造型外后视镜模型进行风洞实验研究,分析流场、空气阻力和壁面脉动压力随造型改变的规律。气动特性(流场和阻力)采用粒子图像测速仪 (PIV) 和六分量动态天平测量,声学特性采用壁面麦克风对侧窗平板的湍流脉动进行测量。研究结果表明:3个造型改进方案均可在不同程度上改善外后视镜尾迹区域流场品质,有效降低空气阻力和气动噪声。其中B模型阻力系数较基础模型降低18.4%,壁面脉动压力总声压级在中低频段可降低4.6 dB;C模型可降低阻力系数7.5%,总声压级可降低4.3 dB。
  • 图  1  基准模型

    Figure  1.  Baseline model

    图  2  改进模型

    Figure  2.  Improved model

    图  3  基础模型与模型C底部支撑柱横截面的差异

    Figure  3.  Diagram of difference between baseline model and model C on a cross-section of the support column

    图  4  模型实物图

    Figure  4.  Real models

    图  5  模型安装示意图

    Figure  5.  Model installation diagram

    图  6  截面分析示意图

    Figure  6.  Diagram of section analysis

    图  7  PIV实验布置图

    Figure  7.  PIV experiment layout

    图  8  壁面压力监测点布置示意图

    Figure  8.  Schematic layout of wall pressure monitoring points

    图  9  六分量天平安装示意图

    Figure  9.  Schematic installation of six-component balance

    图  10  基础模型监测点频谱分析

    Figure  10.  Spectrum analysis of monitoring points of baseline

    图  11  不同模型在监测点3、4的频谱对比图

    Figure  11.  Spectrum comparison map of monitoring points 3 and 4 in different models

    图  12  不同模型在监测点10、11的频谱对比图

    Figure  12.  Spectrum comparison map of monitoring points 10 and 11 in different models

    图  13  不同模型在监测点17、18的频谱对比图

    Figure  13.  Spectrum comparison map of monitoring points 17 and 18 in different models

    图  14  纵截面流线对比图

    Figure  14.  Comparison of streamlines in longitudinal section

    图  15  横截面1流线对比图

    Figure  15.  Comparison of streamlines in cross section 1

    图  16  横截面2流线对比图

    Figure  16.  Comparison of streamlines in cross section 2

    图  17  纵截面涡强及矢量场分布对比图

    Figure  17.  Comparison of vortex intensity and vector field distribution in longitudinal section

    图  18  横截面1涡强及矢量场分布对比图

    Figure  18.  Comparison of vortex intensity and vector field distribution in cross section 1

    图  19  横截面2涡强及矢量场分布对比图

    Figure  19.  Comparison of vortex intensity and vector field distribution in cross section 2

    图  20  横截面2上POD第一模态y方向分布对比图

    Figure  20.  Comparison of first POD mode (mode-1) associated with the vertical fluctuating for flows over four models

    图  21  模型C横截面2的POD第二模态及矢量场分布对比图

    Figure  21.  Second POD mode (mode-2) associated with the streamwise and vertical fluctuating for flows over model C

    图  22  4个模型在横截面2上的POD模态动能百分比

    Figure  22.  Percentage of kinetic energy held by the POD modes for the four models on the cross section-2

    图  23  不同模型阻力值

    Figure  23.  The drag values of different models

    图  24  不同模型阻力系数值

    Figure  24.  The drag coefficient of different models

    表  1  第一排3个监测点总声压级对照表

    Table  1.   Comparison table of overall sound pressure level of three monitoring points in the first row

    单位:dB
    监测点 345
    背景压力115.6111.9114.6
    基础模型127.4126.4127.6
    模型 A125.4124.8126.1
    模型 B124.3123.8124.7
    模型 C123.2123.4123.3
    下载: 导出CSV

    表  2  第二排3个监测点总声压级对照表

    Table  2.   Comparison table of overall sound pressure level of three monitoring points in the second row

    单位:dB
    监测点101112
    背景压力113.4112.7113.8
    基础模型126.7125.0126.9
    模型 A124.3124.7125.7
    模型 B122.8123.5124.1
    模型 C122.1123.1122.8
    下载: 导出CSV

    表  3  第三排3个监测点总声压级对照表

    Table  3.   Comparison table of overall sound pressure level of three monitoring points in the third row

    单位:dB
    监测点171819
    背景压力 112.5 113.0 113.8
    基础模型 126.5 124.4 126.3
    模型 A 122.7 122.9 123.3
    模型 B 120.5 122.1 121.3
    模型 C 121.2 122.5 122.0
    下载: 导出CSV

    表  4  各改进模型与基础模型总声压级在不同频率范围内的差值

    Table  4.   Overall sound pressure level differences between the modified models and the generic simple model

    单位:dB
    20~500 Hz频段20~104 Hz频段
    ΔLsp1(模型 A−基础模型)−3.0−1.9
    ΔLsp2(模型 B−基础模型)−4.6−3.3
    ΔLsp3(模型 C−基础模型)−4.3−3.7
    下载: 导出CSV

    表  5  模型阻力实验值

    Table  5.   Test values of models drag

    单位:N
    实验次数 基础模型模型 A模型 B模型 C
    14.2293.7333.4893.911
    24.2573.7393.4783.930
    34.2623.7683.4763.953
    44.2773.7603.4793.965
    54.2873.7843.4803.983
    均值4.2623.7573.4803.948
    下载: 导出CSV
  • [1] BUCHHEIM R, DOBRZYNSKI W, MANKAU H, et al. Vehicle interior noise related to external aerodynamics[J]. International Journal of Vehicle Design, 1982, 3(4): 398–410. doi: 10.1504/IJVD.1982.061286
    [2] HUCHO W, SOVRAN G. Aerodynamics of road vehicles[J]. Annual Review of Fluid Mechanics, 1993, 25: 485–537. doi: 10.1146/annurev.fl.25.010193.002413
    [3] 沈钰贵, 陆森林, 孟新. 高速汽车侧窗气流噪声模拟[J]. 机械设计与制造, 2012(7): 125–127. doi: 10.3969/j.issn.1001-3997.2012.07.046

    SHEN Y G, LU S L, MENG X. Simulation on aerodynamic noise of automobile’s side window at high speed[J]. Machinery Design & Manufacture, 2012(7): 125–127. doi: 10.3969/j.issn.1001-3997.2012.07.046
    [4] OETTLE N, MANKOWSKI O, SIMS-WILLIAMS D, et al. Evaluation of the aerodynamic and aeroacoustic response of a vehicle to transient flow conditions[J]. SAE International Journal of Passenger Cars - Mechanical Systems, 2013, 6(1): 389–402. doi: 10.4271/2013-01-1250
    [5] GRAHS T, OTHMER C. Evaluation of aerodynamic noise generation: parameter study of a generic side mirror evaluating the aeroacoustic source strength[C]//European Conference on Computational Fluid Dynamics. 2006.
    [6] KIM D, KIM M, SAREDI E, et al. Robotic PTV study of the flow around automotive side-view mirror models[J]. Experimental Thermal and Fluid Science, 2020, 119: 110202. doi: 10.1016/j.expthermflusci.2020.110202
    [7] KATO Y. Numerical simulations of aeroacoustic fields around automobile rear-view mirrors[J]. SAE International Journal of Passenger Cars - Mechanical Systems, 2012, 5(1): 567–579. doi: 10.4271/2012-01-0586
    [8] LI Q L, YANG Z G, WANG Y G, et al. Experimental and numerical studies on aerodynamic noise of automotive rear view mirror[J]. Noise Control Engineering Journal, 2011, 59(6): 613. doi: 10.3397/1.3657481
    [9] MOHAMUD O M, JOHNSON P. Broadband noise source models as aeroacoustic tools in designing low NVH HVAC ducts[C]//Proc of the SAE Technical Paper Series, 400 Commonwealth Drive. 2006. doi: 10.4271/2006-01-1192
    [10] CHEN K H, JOHNSON J, DIETSCHI U, et al. Automotive mirror wind noise simulations and wind tunnel measurements[C]//Proc of the 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference). 2008. doi: 10.2514/6.2008-2906
    [11] WALKER R, WEI W. Optimization of mirror angle for front window buffeting and wind noise using experimental methods[C]//Proc of the SAE Technical Paper Series Commonwealth Drive. 2007. doi: 10.4271/2007-01-2401
    [12] YAO H D, DAVIDSON L, CHRONEER Z. Investigation of interior noise from generic side- View mirror using incompressible and compressible solvers of DES and LES[C]//Proc of the SAE Technical Paper Series, 400 Commonwealth Drive. 2018. doi: 10.4271/2018-01-0735
    [13] 王雪钊. 后视镜优化对某轿车气动噪声的影响研究[D]. 镇江: 江苏大学, 2019.

    WANG X Z. Research on the influence of the wing mirror optimization on aerodynamic noise of A car[D]. Zhenjiang: Jiangsu University, 2019.
    [14] 刘红光, 陆森林. 高速车辆气流噪声计算方法[J]. 交通运输工程学报, 2002, 2(2): 41–44. doi: 10.3321/j.issn:1671-1637.2002.02.010

    LIU H G, LU S L. Calculation method of the aerodynamic noise around high speed vehicles[J]. Journal of Traffic and Transportation Engineering, 2002, 2(2): 41–44. doi: 10.3321/j.issn:1671-1637.2002.02.010
    [15] 谢超, 谷正气, 杨振东, 等. 不同RANS/LES混合模型的汽车气动噪声分析[J]. 汽车工程, 2015, 37(4): 440–445, 459. doi: 10.3969/j.issn.1000-680X.2015.04.012

    XIE C, GU Z Q, YANG Z D, et al. Analysis on vehicle aerodynamic noise with different hybrid RANS/LES models[J]. Automotive Engineering, 2015, 37(4): 440–445, 459. doi: 10.3969/j.issn.1000-680X.2015.04.012
    [16] 陈鑫, 冯晓, 沈传亮, 等. 车外后视镜造型对气动噪声影响的实验研究[J]. 汽车工程, 2017, 39(2): 206–213. doi: 10.19562/j.chinasae.qcgc.2017.02.014

    CHEN X, FENG X, SHEN C L, et al. An experimental study on the effects of exterior rearview mirrors styling on aerodynamic noise[J]. Automotive Engineering, 2017, 39(2): 206–213. doi: 10.19562/j.chinasae.qcgc.2017.02.014
    [17] 陈鑫, 王宁, 沈传亮, 等. 后视镜造型对前侧窗气动噪声的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 426–436. doi: 10.13229/j.cnki.jdxbgxb20180867

    CHEN X, WANG N, SHEN C L, et al. Effect of rearview mirror modeling on aerodynamic noise of front window[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(2): 426–436. doi: 10.13229/j.cnki.jdxbgxb20180867
    [18] 李启良, 杜文海, 王毅刚, 等. 基于主动射流的汽车后视镜区域气动噪声控制[J]. 同济大学学报(自然科学版), 2019, 47(8): 1195–1200. doi: 10.11908/j.issn.0253-374x.2019.08.017

    LI Q L, DU W H, WANG Y G, et al. Aerodynamic noise control of automobile rear view mirror based on active jet[J]. Journal of Tongji University (Natural Science), 2019, 47(8): 1195–1200. doi: 10.11908/j.issn.0253-374x.2019.08.017
    [19] 姜豪, 赖万虎, 张思文, 等. 汽车后视镜气动噪声优化研究[J]. 汽车工程, 2020, 42(1): 121–126. doi: 10.19562/j.chinasae.qcgc.2020.01.018

    JIANG H, LAI W H, ZHANG S W, et al. Research on aeroacoustic optimization of vehicle rearview mirror[J]. Automotive Engineering, 2020, 42(1): 121–126. doi: 10.19562/j.chinasae.qcgc.2020.01.018
    [20] LI Y Q, LIU Y Y, DING Z Y. Numerical simulation on the impact of the bionic structure on aerodynamic noises of sidewindow regions in vehicles[J]. Journal of Vibroengineering, 2018, 20(2): 1257–1271. doi: 10.21595/jve.2017.18779
    [21] TAIRA K, BRUNTON S L, DAWSON S T M, et al. Modal analysis of fluid flows: an overview[J]. AIAA Journal, 2017, 55(12): 4013–4041. doi: 10.2514/1.J056060
  • 加载中
图(25) / 表(5)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  66
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-17
  • 修回日期:  2022-03-03
  • 录用日期:  2022-05-10
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日