留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋翼桨–涡干扰噪声特性风洞试验研究

刘向楠 刘少腾 周国成 邵天双 陈宝

刘向楠, 刘少腾, 周国成, 等. 旋翼桨–涡干扰噪声特性风洞试验研究[J]. 实验流体力学, 2023, 37(3): 84-91 doi: 10.11729/syltlx20210190
引用本文: 刘向楠, 刘少腾, 周国成, 等. 旋翼桨–涡干扰噪声特性风洞试验研究[J]. 实验流体力学, 2023, 37(3): 84-91 doi: 10.11729/syltlx20210190
LIU X N, LIU S T, ZHOU G C, et al. Wind tunnel test research on the characteristics of rotor blade-vortex interaction noise[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 84-91 doi: 10.11729/syltlx20210190
Citation: LIU X N, LIU S T, ZHOU G C, et al. Wind tunnel test research on the characteristics of rotor blade-vortex interaction noise[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 84-91 doi: 10.11729/syltlx20210190

旋翼桨–涡干扰噪声特性风洞试验研究

doi: 10.11729/syltlx20210190
详细信息
    作者简介:

    刘向楠:(1987—),男,内蒙古赤峰人,高级工程师。研究方向:飞行器风洞试验技术。通信地址:黑龙江省哈尔滨市平房区祥云路6号(150001)。E-mail:liuxiangnan200851@163.com

    通讯作者:

    E-mail:liuxiangnan200851@163.com

  • 中图分类号: V211.52

Wind tunnel test research on the characteristics of rotor blade-vortex interaction noise

  • 摘要: 在中国航空工业空气动力研究院FL–10风洞中开展了旋翼桨–涡干扰噪声传播特性试验,对BO–105 主旋翼40% 缩比模型中等前飞速度爬升、平飞、斜下降状态的气动噪声进行了测量。首先采用Heyson洞壁干扰修正方法确定风洞试验时的旋翼下滑角,通过气流内测量阵列移动获得了桨盘平面下方完整的噪声辐射场,然后对不同飞行状态下的桨–涡干扰噪声传播特性进行了分析,得到了典型状态的声压–时间历程、频谱和声压级云图。结果表明:旋翼斜下降飞行状态出现了明显的桨–涡干扰噪声,干扰较强时桨叶前行侧和后行侧都会产生桨–涡干扰噪声,且其传播具有明显的方向性,即前行侧指向桨盘上游和桨盘下方,后行侧指向桨盘下游。
  • 图  1  旋翼模型在FL−10开口试验段

    Figure  1.  Rotor model set-up in FL−10 open jet test section

    图  2  传声器分布(顺气流方向观看)

    Figure  2.  Microphone positions (looking upstream)

    图  3  旋翼系统

    Figure  3.  Rotor system

    图  4  试验设置(侧视图)

    Figure  4.  Experimental setup (side view)

    图  5  风洞鼻锥性能测试

    Figure  5.  Wind tunnel test setup for nose cone performance test

    图  6  不同阵列位置时的背景噪声频谱对比

    Figure  6.  Comparison of background noise spectra at different positions of array

    图  7  旋翼噪声与背景噪声频谱对比

    Figure  7.  Spectra comparison between rotor noise and background noise

    图  8  阵列不同位置时传声器 23的频谱对比

    Figure  8.  Comparison of mic 23 spectra at different positions of array

    图  9  不同下滑角时噪声声压–时间历程对比(传声器 7,x=0,μ=0.150)

    Figure  9.  Spectra comparison between different descent angles (mic 7, x=0, μ=0.150)

    图  10  不同下滑角时噪声频谱对比(传声器 7,x=0,μ=0.150)

    Figure  10.  Spectra comparison between different descent angels (mic 7, x=0, μ=0.150)

    图  11  不同下滑角时中频声压级云图 (μ=0.150,Cw=0.0044)

    Figure  11.  Mid frequency sound pressure level contour at different descent angles (μ=0.150, Cw=0.0044)

    图  12  中频声压级随下滑角变化曲线(μ=0.150)

    Figure  12.  Sound pressure level as a function of descent angel (μ=0.150)

    图  13  不同前进比中频声压级积分云图( θFT=6°)

    Figure  13.  Mid frequency sound pressure level contour at different advance ratio (θFT =6°)

    图  14  中频声压级随前进比变化曲线(θFT=6°)

    Figure  14.  Sound pressure level as a function of advance ratio(θFT=6°)

    表  1  六分量应变天平和单分量应变天平载荷

    Table  1.   Measurement range of six-component and single-component strain-gage balance

    Fx/NFy/NFz/NMx/(N·m)My/(N·m)Mz/(N·m)Mk/(N·m)
    195095008504004906201800
    下载: 导出CSV

    表  2  风洞试验状态

    Table  2.   Matrix of test in wind tunnel

    前进比μθFT /(°)αs/(°)Cw
    0.09268.10.0044
    0.1386 5.40.0044
    0.1506 4.90.0044
    0.15031.90.0044
    0.1500−1.10.0044
    0.150−3−4.10.0044
    0.150−6−7.10.0044
    下载: 导出CSV
  • [1] YU Y H. Rotor blade–vortex interaction noise[J]. Progress in Aerospace Sciences, 2000, 36(2): 97–115. doi: 10.1016/S0376-0421(99)00012-3
    [2] Du Vall T, Sim B, Schmitz F. Cabin versus Far-Field Blade- Vortex Interaction Noise Level Trends[C]// Proc of American Helicopter Society Aerodynamics, Acoustics and Test Evaluation Technical Specialists Meeting. 2002.
    [3] GENNARETTI M, BERNARDINI G. Novel boundary integral formulation for blade-vortex interaction aerodynamics of helicopter rotors[J]. AIAA Journal, 2007, 45(6): 1169–1176. doi: 10.2514/1.18383
    [4] FOGARTY D E, WILBUR W L, SEKULA M K. Prediction of BVI noise for an active twist rotor using a loosely coupled CFD/CSD method and comparison to experimental data[R]// NF1676L-14452, 2012.
    [5] 史勇杰, 苏大成, 徐国华. 桨叶气动外形对直升机桨–涡干扰噪声影响研究[J]. 南京航空航天大学学报, 2015, 47(2): 235–242. doi: 10.16356/j.1005-2615.2015.02.009

    SHI Y J, SU D C, XU G H. Research on influence of shape parameters on blade-vortex interaction noise of helicopter rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2): 235–242. doi: 10.16356/j.1005-2615.2015.02.009
    [6] 史勇杰, 徐国华, 王菲. 直升机旋翼桨–涡干扰脉冲噪声传播特性研究[J]. 南京航空航天大学学报, 2014, 46(2): 212–217.

    SHI Y J, XU G H, WANG F. Propagation characteristics of helicopter rotor blade-vortex interaction noise[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(2): 212–217.
    [7] 王菲, 徐国华, 胡志远. 大气环境对直升机旋翼桨–涡干扰噪声辐射特性的影响[J]. 南京航空航天大学学报, 2020, 52(2): 304–310.

    WANG F, XU G H, HU Z Y. Effects of atmospheric environment on helicopter blade-vortex interaction noise radiation characteristics[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(2): 304–310.
    [8] BROOKS T F, JOLLY R J, MARCOLINI M A. Determination of noise source contributions using scaled model rotor acoustic data[R]. NASATP-2825, 1998.
    [9] HELLER H, SPLETTSTOESSER W, KLOEPPEL V, et al. HELINOISE—The European Community rotor acoustics research program[C]//Proc of the 15th Aeroacoustics Conference. 1993. doi: 10.2514/6.1993-4358
    [10] SPLETTSTOESSER W R, NIESL G, CENEDESE F, et al. Experimental results of the European HELINOISE aeroacoustic rotor test[J]. Journal of the American Helicopter Society, 1995, 40(2): 3–14. doi: 10.4050/jahs.40.2.3
    [11] HELLER H, BUCHHOLZ H, SCHULTZ K, et al. Helicopter rotor blade aeroacoustics: a comparison of model-scale wind tunnel and full-scale flight test results [C]// Proc of 20th ICAS Congress. 1996.
    [12] YU Y H, GMELIN B, HELLER H, et al. HHC aeroacoustics rotor test at the DNW—the joint German/French/US HART project[C]. Proceedings of the 20th European Rotorcraft Forum. 1994.
    [13] SPLETTSTOESSER W R, KUBE R, WAGNER W, et al. Key results from a higher harmonic control aeroacoustic rotor test (HART)[J]. Journal of the American Helicopter Society, 1997, 42(1): 58–78. doi: 10.4050/jahs.42.58
    [14] YU Y H, TUNG C, VAN DER WALL B G. The HART-II Test: Rotor Wakes and Aeroacoustics with Higher-Harmonic Pitch Control (HHC) Inputs —The Joint German/French/Dutch/US Project[C]//Proc of 58th Annual Forum of the American Helicopter Society. 2002.
    [15] VAN DER WALL B G, BURLEY C L, YU Y, et al. The HART II test - measurement of helicopter rotor wakes[J]. Aerospace Science and Technology, 2004, 8(4): 273–284. doi: 10.1016/j.ast.2004.01.001
    [16] JAYARAMAN B, WISSINK A, LIM J, et al. Helios prediction of blade-vortex interaction and wake of the HART II rotor[C]//Proc of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee. 2012: 714. doi: 10.2514/6.2012-714
    [17] ARUN KUMAR A, VISWAMURTHY S R, GANGULI R. Correlation of helicopter rotor aeroelastic response with HART-II wind tunnel test data[J]. Aircraft Engineering and Aerospace Technology, 2010, 82(4): 237–248. doi: 10.1108/00022661011082713
    [18] YIN J P, WALL B V D, OERLEMANS S. Representative test results from HeliNOVI aeroacoustic main rotor/tail rotor/fuselage test in DNW[C]// Proc of 31th European Rotercraft Forum. 2005.
    [19] YIN J P, A DUMMEL, D FALCHERO. Analysis of Tail Rotor noise reduction benefits using HELINOVI aeroacoustic main/tail rotor test and posttest prediction results[C]// Proc of 32th European Rotercraft Forum. 2006.
    [20] 徐国华, 高正. 悬停状态下模型旋翼噪声试验的初步研究[J]. 空气动力学学报, 1996(1): 68–72.

    XU G H, GAO Z. A preliminary investigation of noise experiment for helicopter model rotor in hover[J]. Acta Aerodynamica Sinica, 1996(1): 68–72.
    [21] 曹亚雄, 樊枫, 林永峰, 等. 带先进桨尖的模型旋翼悬停噪声计算与试验[J]. 南京航空航天大学学报, 2016, 48(2): 180–185. doi: 10.16356/j.1005-2615.2016.02.005

    CAO Y X, FAN F, LIN Y F, et al. Numerical calculations and test research on aeroacoustics characteristics of model rotors with advanced blade tip in hover[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(2): 180–185. doi: 10.16356/j.1005-2615.2016.02.005
    [22] 刘正江, 黄建萍, 陈焕, 等. 旋翼桨涡干扰噪声特性试验技术研究[J]. 直升机技术, 2019(1): 43–47,42. doi: 10.3969/j.issn.1673-1220.2019.01.010

    LIU Z J, HUANG J P, CHEN H, et al. Study on characteristic of rotor-blade vortex interaction noise[J]. Helicopter Technique, 2019(1): 43–47,42. doi: 10.3969/j.issn.1673-1220.2019.01.010
    [23] 唐朝, 招启军, 王博, 等. 用于BVI噪声试验的新型涡发生器设计与分析[J]. 南京航空航天大学学报, 2018, 50(2): 157–166. doi: 10.16356/j.1005-2615.2018.02.002

    TANG C, ZHAO Q J, WANG B, et al. Design and analysis of new type vortex generator for BVI noise experiment[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(2): 157–166. doi: 10.16356/j.1005-2615.2018.02.002
    [24] HEYSON H H. Linearized theory of wind-tunnel jet-boundary corrections and ground effect for VTOL-STOL aircraft [R]. NASA TR R-124, 1962.
    [25] HEYSON H H. FORTRAN programs for calculating wind-tunnel boundary interference [R]. NASA TM X-1740, 1969.
    [26] HEYSON H H. Use of superposition in digital computers to obtain wind tunnel interference factors for arbitrary configurations, with particular reference to V/STOL models[R]. NASA TR R-302, 1969.
    [27] LANGER H, PETERSON R L, MAIER T H. An experimental evaluation of wind tunnel wall correction methods for helicopter performance [C]// Proceedings of the AHS 52nd Annual Forum. 1996.
    [28] 李元首, 陈宝, 张雪, 等. 传声器阵列校准技术研究[J]. 现代电子技术, 2014, 37(24): 94–97. doi: 10.3969/j.issn.1004-373X.2014.24.026

    LI Y S, CHEN B, ZHANG X, et al. Calibration technology of microphone array[J]. Modern Electronics Technique, 2014, 37(24): 94–97. doi: 10.3969/j.issn.1004-373X.2014.24.026
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  224
  • HTML全文浏览量:  85
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-22
  • 修回日期:  2022-02-05
  • 录用日期:  2022-03-17
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日