留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿生鲨鱼皮复合微纳减风阻结构的仿真与制备

徐征 刘日 王天昊 迟振东 王作斌 李理

徐征,刘日,王天昊,等. 仿生鲨鱼皮复合微纳减风阻结构的仿真与制备[J]. 实验流体力学,2022,36(X):1-8 doi: 10.11729/syltlx20220002
引用本文: 徐征,刘日,王天昊,等. 仿生鲨鱼皮复合微纳减风阻结构的仿真与制备[J]. 实验流体力学,2022,36(X):1-8 doi: 10.11729/syltlx20220002
XU Z,LIU R,WANG T H,et al. Simulation and fabrication of bionic sharkskin composite micro-nano wind resistance reduction structure[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-8. doi: 10.11729/syltlx20220002
Citation: XU Z,LIU R,WANG T H,et al. Simulation and fabrication of bionic sharkskin composite micro-nano wind resistance reduction structure[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-8. doi: 10.11729/syltlx20220002

仿生鲨鱼皮复合微纳减风阻结构的仿真与制备

doi: 10.11729/syltlx20220002
基金项目: 国家重点研发计划(2016YFE0112100);科技部“111计划”微纳操纵与制造(D17017);吉林省微纳操纵与制造国际科技合作重点联合实验室项目(20190702002GH)
详细信息
    作者简介:

    徐征:(1994—),男,吉林白城人,硕士研究生。研究方向:纳米操作与制造。通信地址:吉林省长春市朝阳区卫星路7089号长春理工大学东校区物理学院国家纳米操作与制作国际联合研究中心(130022)。E-mail:1260007361@qq.com

    通讯作者:

    E-mail:wangz@cust.edu.cn

    lil@cust.edu.cn

  • 中图分类号: O357.5

Simulation and fabrication of bionic sharkskin composite micro-nano wind resistance reduction structure

  • 摘要: 仿生学与减阻技术的结合,为减阻开辟了重要的研究方向,在航空航天领域有着潜在的发展与应用前景。为提升降低风阻效果,本文对复合微纳减风阻结构进行了研究,基于仿生学原理,采用CFD仿真以及激光微纳制造技术,建立了减阻结构组合模型,并在飞行器的大气传感器半球头体模型表面制造仿生鲨鱼皮复合微纳结构,即在仿生鲨鱼皮鳞片结构的基础上,通过激光干涉扫描二级微沟槽,以进一步提升减阻效果。采用仿真模拟与风洞实验相结合的方式,对减阻机理进行理论分析,完成了复合结构的微纳制造,减阻率最高可达10.3%。
  • 图  1  鲨鱼皮鳞片结构模型

    Figure  1.  Structural model of shark skin scales

    图  2  鲨鱼皮鳞片与半球头体排布组合整体图

    Figure  2.  Overall view of the combination of sharkskin scales and hemispherical head arrangement

    图  3  鲨鱼皮鳞片在半球头体表面的排布

    Figure  3.  The orientation of the scales on the surface of the hemispheric head

    图  4  二级微沟槽结构及其在鲨鱼皮鳞片结构上的排布(截面图)

    Figure  4.  Secondary microgrooves and the arrangement of secondary microgrooves on sharkskin scales(cross-sectional view)

    图  5  鲨鱼皮沟槽的横截面视图和纵截面视图

    Figure  5.  section view of shark skin grooves

    图  6  光滑半球头体风洞检测模型和覆盖仿生鲨鱼皮鳞片的半球头体风洞检测模型

    Figure  6.  Wind tunnel detection model of smooth hemispheric head and wind tunnel inspection models of hemispherical cephalic bodies covered with bionic sharkskin scales

    图  7  仿生鲨鱼皮的网格

    Figure  7.  Meshing of bionic shark skin

    图  8  光滑半球头体y=0处的速度矢量云图及局部放大图

    Figure  8.  The velocity vector cloud of the smooth hemispheric head at y=0 and an enlarged version

    图  9  覆盖鲨鱼皮鳞片的半球头体y=0处的速度矢量云图及局部放大图

    Figure  9.  Velocity vector cloud image of hemispherical head covered by sharkskin structure at y=0 and an enlarged version

    图  10  同一部份半球头体的压力云图

    Figure  10.  Pressure cloud images of the same part of hemispheric cephalic body

    图  11  二级微沟槽区域气流速度矢量云图

    Figure  11.  Velocity vector cloud diagram of airflow in the element region of secondary groove

    图  12  激光扫描仿生鲨鱼皮鳞片

    Figure  12.  Bionic shark skin scales scanned by laser

    图  13  激光扫描仿生鲨鱼皮鳞片加激光干涉加工二级微沟槽

    Figure  13.  Laser scanning and laser interference processing secondary groove

    表  1  实验模型参数

    Table  1.   Experimental model parameters

    lc=lsh1=h2LxLyLz
    400 µm150 µm350 mm350 mm260 mm
    下载: 导出CSV

    表  2  CFD仿真参数

    Table  2.   CFD simulation parameter

    样品风速/(km·h–1阻力/NC减阻效率ΔC
    光滑半球头体1501.4990.413
    覆盖鳞片半球头体1501.2450.34316.9%
    光滑半球头体1601.7310.419
    覆盖鳞片半球头体1601.4070.34218.4%
    下载: 导出CSV

    表  3  风洞实验参数表

    Table  3.   Parameters of wind tunnel experiment

    样品风速/(km·h–1阻力/NC减阻效率
    ΔC
    光滑表面样件A1501.3860.3823
    非光滑表面样件B1501.2660.34918.7%
    非光滑表面样件C1501.2430.343010.3%
    光滑表面样件A1601.5650.3804
    非光滑表面样件B1601.4420.35047.9%
    非光滑表面样件C1601.4070.341910.1%
    下载: 导出CSV
  • [1] DOMEL A G,SAADAT M,WEAVER J C,et al. Shark skin-inspired designs that improve aerodynamic performance[J]. Journal of the Royal Society, Interface,2018,15(139):20170828. doi: 10.1098/rsif.2017.0828
    [2] 李黎明. ANSYS有限元分析实用教程[M]. 北京: 清华大学出版社, 2005.
    [3] WANG Y H,ZHANG Z B,XU J K,et al. One-step method using laser for large-scale preparation of bionic superhydro-phobic & drag-reducing fish-scale surface[J]. Surface and Coatings Technology,2021,409:126801. doi: 10.1016/j.surfcoat.2020.126801
    [4] WALSH M J. Turbulent boundary layer drag reduction using riblets[C]//AIAA 20th Aerospace Sciences Meeting, 1982. doi: 10.2514/6.1982-169
    [5] SANDERS R H,RUSHALL B,TOUSSAINT H,et al. Bodysuit yourself: but first think about it[J]. Journal of Turbulence,2001,S/3(138):201-212.
    [6] 刘志华,董文才,夏飞. V型沟槽尖峰形状对减阻效果及流场特性影响的数值分析[J]. 水动力学研究与进展:A辑,2006,21(2):223-231. doi: 10.3969/j.issn.1000-4874.2006.02.011

    LIU Z H,DONG W C,XIA F. The effects of the tip shape of V-groove on drag reduction and flow field characteristics by numerical analysis[J]. Journal of Hydrodynamics:Series A,2006,21(2):223-231. doi: 10.3969/j.issn.1000-4874.2006.02.011
    [7] 田丽梅,任露泉,刘庆平,等. 仿生非光滑旋成体表面减阻特性数值模拟[J]. 吉林大学学报(工学版),2006,36(6):908-913. doi: 10.3969/j.issn.1671-5497.2006.06.016

    TIAN L M,REN L Q,LIU Q P,et al. Numerical simulation on drag reduction characteristic around bodies of revolution with bionic non-smooth surface[J]. Journal of Jilin University(Engineering and Technology Edition),2006,36(6):908-913. doi: 10.3969/j.issn.1671-5497.2006.06.016
    [8] DENG Z F,YANG Q,CHEN F,et al. Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining[J]. Optics Letters,2015,40(9):1928-1931. doi: 10.1364/OL.40.001928
    [9] 丛茜,封云,任露泉. 仿生非光滑沟槽形状对减阻效果的影响[J]. 水动力学研究与进展:A辑,2006,21(2):232-238. doi: 10.3969/j.issn.1000-4874.2006.02.012

    CONG Q,FENG Y,REN L Q. Affecting of riblets shape of nonsmooth surface on drag reduction[J]. Journal of Hydrodynamics:Series A,2006,21(2):232-238. doi: 10.3969/j.issn.1000-4874.2006.02.012
    [10] STANFORD B,IFJU P,ALBERTANI R,et al. Fixed membrane wings for micro air vehicles: experimental charac-terization, numerical modeling, and tailoring[J]. Progress in Aerospace Sciences,2008,44(4):258-294. doi: 10.1016/j.paerosci.2008.03.001
    [11] HU C L,WANG X D,WANG G Y,et al. The structures of unsteady cavitation shedding flow around an axisymmetric body with a blunt headform[J]. Journal of Mechanical Science and Technology,2018,32(1):199-210. doi: 10.1007/s12206-017-1221-y
    [12] JIANG X X,XU Y Q,WANG C,et al. Numerical simulations of gas-particle flow behavior created by low-level rotary-winged aircraft flight over particle bed[J]. Applied Mathematics and Mechanics,2019,40(3):397-406. doi: 10.1007/s10483-019-2449-9
    [13] OEFFNER J,LAUDER G V. The hydrodynamic function of shark skin and two biomimetic applications[J]. The Journal of Experimental Biology,2012,215(Pt 5):785-795. doi: 10.1242/jeb.063040
    [14] FUAAD P A,PRAKASH K A. Enhanced drag-reduction over superhydrophobic surfaces with sinusoidal textures: a DNS study[J]. Computers & Fluids,2019,181:208-223. doi: 10.1016/j.compfluid.2019.01.022
    [15] MENTER F. Zonal two equation k-ω turbulence models for aerodynamic flows[R]. AIAA-93-2906, 1993. doi: doi.org/10.2514/6.1993-2906
    [16] BOROUCHAKI H, LAUG P, GEORGE P L. Parametric surface meshing using a combined advancing-front generalized Delaunay approach[J]. International Journal for Numerical Methods in Engineering, 2000, 49(1-2): 233-259. doi: 10.1002/1097-0207(20000910/20)49:1/2<233::AID-NME931>3.0.CO;2-G
    [17] VERSTEEG H, MALALASEKERA W. An introduction to computational fluid dynamics: the finite volume method[M]. Apache Junction: World Publishing Corporation, 1995.
    [18] YANG D D,YU A,JI B,et al. Numerical analyses of ventilated cavitation over a 2-D NACA0015 hydrofoil using two turbulence modeling methods[J]. Journal of Hydro-dynamics,2018,30(2):345-356. doi: 10.1007/s42241-018-0032-7
    [19] RASTEGARI A,AKHAVAN R. The common mechanism of turbulent skin-friction drag reduction with superhydro-phobic longitudinal microgrooves and riblets[J]. Journal of Fluid Mechanics,2018,838:68-104. doi: 10.1017/jfm.2017.865
    [20] ZHANG L,SHAN X B,XIE T. Active control for wall drag reduction: methods, mechanisms and performance[J]. IEEE Access,2020,8:7039-7057. doi: 10.1109/ACCESS.2020.2963843
    [21] STRANG G, FIX G. An analysis of the finite element method[M]. Englewood: Prentice-Hall, 1973.
    [22] CHEN D K,CUI X X,CHEN H W. Dual-composite drag-reduction surface based on the multilayered structure and mechanical properties of tuna skin[J]. Microscopy Research and Technique,2021,84(8):1862-1872. doi: 10.1002/jemt.23743
    [23] LIU R,CHI Z D,CAO L,et al. Fabrication of biomimetic superhydrophobic and anti-icing Ti6Al4V alloy surfaces by direct laser interference lithography and hydrothermal treatment[J]. Applied Surface Science,2020,534:147576. doi: 10.1016/j.apsusc.2020.147576
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  908
  • HTML全文浏览量:  277
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10
  • 修回日期:  2022-02-14
  • 录用日期:  2022-02-17
  • 网络出版日期:  2022-05-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日