留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内外流一体化气动热模拟一致性研究

张旭辉 王兆伟 姚冉

张旭辉, 王兆伟, 姚冉. 内外流一体化气动热模拟一致性研究[J]. 实验流体力学, doi: 10.11729/syltlx20220041
引用本文: 张旭辉, 王兆伟, 姚冉. 内外流一体化气动热模拟一致性研究[J]. 实验流体力学, doi: 10.11729/syltlx20220041
ZHANG X H, WANG Z W, YAO R. The aerodynamic heating consistency study between CFD and experiment for air-breathing integrated vehicle[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220041
Citation: ZHANG X H, WANG Z W, YAO R. The aerodynamic heating consistency study between CFD and experiment for air-breathing integrated vehicle[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220041

内外流一体化气动热模拟一致性研究

doi: 10.11729/syltlx20220041
详细信息
    作者简介:

    张旭辉:(1975—),男,辽宁宽甸人,研究员,博士研究生导师。研究方向:运载火箭总体设计。通信地址:北京市9200信箱1分箱(100076)。E-mail:zhangxh0215@126.com

    通讯作者:

    E-mail:zhangxh0215@126.com

  • 中图分类号: V211.3;V411.7

The aerodynamic heating consistency study between CFD and experiment for air-breathing integrated vehicle

  • 摘要: 以内外流一体化设计的飞行器为研究对象,对比分析了内外流场气动热仿真和风洞试验的一致性,定量分析了气动热仿真与风洞试验之间的差异,并研究了产生差异的原因。气动热仿真采用有限体积法求解Navier−Stokes方程,湍流模型为SA,空间格式为Roe的FDS,时间格式为LU−SGS。在FD−20a激波风洞中开展风洞试验,来流马赫数6,单位雷诺数1.14 × 107~2.98 × 107 m−1,迎角0°~8°。仿真与试验的对比结果表明:沿流向流动干扰复杂程度增大,热流模拟一致性降低;压缩面流动以附着流和小分离为主,仿真与试验一致性较好,平均差异约22.3%;在分离与激波边界层干扰等作用下,与压缩面相比,内流的仿真与试验差异增大,其中喉道平均差异约43.5%,隔离段平均差异约31.8%。受Edney型激波干扰的作用,唇口的仿真与试验在三维空间分布上的最大差异达到100%。从网格、数值方法、非定常特性和不确定度评估等方面,归纳总结了沿流向气动热仿真与试验差异增大的原因。
  • 图  1  内外流一体化气动热试验模型中心截面及热流测点位置示意图

    Figure  1.  Illustration of symmetry surface for integrated forebody experimental model and heat flux sensor positions

    图  2  气动热仿真数据与NAL HWT模型试验数据对比

    Figure  2.  Comparison of non-dimensional heat flux with NAL HWT experiment interaction area

    图  3  唇口流动干扰区网格布局

    Figure  3.  Mesh layout of leading edge shock interaction area

    图  4  不同迎角下的唇口纹影照片

    Figure  4.  Schlieren maps of inlet lip

    图  5  不同迎角下唇口干扰流场仿真结果

    Figure  5.  Simulation results of flow fields for inlet lip

    图  6  不同迎角下唇口中心截面的干扰流场云图

    Figure  6.  Flow fields for inlet leading edge under typical attack angles

    图  7  唇口热流仿真与试验对比

    Figure  7.  Comparison of simulation and experimental results of dimensionless heat flux for inlet lip

    图  8  唇口热流仿真与试验对比

    Figure  8.  Comparison of simulation and experimental results of dimensionless heat flux for inlet lip

    图  9  沿唇口展向变化的流场

    Figure  9.  Flow fields for inlet leading edge with different z positions

    图  10  内外流场大面积区域压力系数仿真与试验对比

    Figure  10.  Comparison of simulation and experimental results of pressure coefficient

    图  11  内外流场大面积区域热流值计算与试验对比

    Figure  11.  Comparison of simulation and experimental results of heat flux

    图  12  内外流场大面积区域热流仿真与试验对比

    Figure  12.  Comparison of simulation and experimental results of heat flux

    图  13  喉道流场压力云图

    Figure  13.  Simulation results of internal flow

    表  1  风洞模拟流场参数表

    Table  1.   Experimental flow field parameter

    试验编号前室
    总温/K
    前室
    总压/MPa
    MaReLα/(°)
    17732.775.951.14 × 1070
    27732.775.951.14 × 1074
    37732.775.951.14 × 1076
    47732.775.951.14 × 1078
    55824.515.952.98 × 1070
    65824.515.952.98 × 1074
    75824.515.952.98 × 1076
    85824.515.952.98 × 1078
    下载: 导出CSV

    表  2  唇口中心截面上无量纲峰值热流对比

    Table  2.   Comparison of simulation and experiment results of dimensionless heat flux for inlet lip at symmetry surface

    试验编号ReLα/(°)无量纲峰值
    热流(仿真)
    无量纲峰值
    热流(试验)
    e
    11.14 × 10701.10.922.2%
    21.14 × 10741.10.922.2%
    31.14 × 10761.01.533.3%
    41.14 × 10781.91.711.7%
    52.98 × 10701.00.911.1%
    62.98 × 10741.00.825.0%
    72.98 × 10760.80.80
    82.98 × 10782.01.442.9%
    下载: 导出CSV
  • [1] 乔文友, 余安远. 内转式进气道与飞行器前体的一体化设计综述[J]. 实验流体力学, 2019, 33(3): 43–59. doi: 10.11729/syltlx20190028

    QIAO W Y, YU A Y. Overview on integrated design of inward-turning inlet with aircraft forebody[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 43–59. doi: 10.11729/syltlx20190028
    [2] 杨基明, 李祝飞, 朱雨建, 等. 激波的传播与干扰[J]. 力学进展, 2016, 46(1): 541–587. doi: 10.6052/1000-0992-16-009

    YANG J M, LI Z F, ZHU Y J, et al. Shock wave propagation and interactions[J]. Advances in Mechanics, 2016, 46(1): 541–587. doi: 10.6052/1000-0992-16-009
    [3] 童福林, 段俊亦, 周桂宇, 等. 激波/湍流边界层干扰压力脉动特性数值研究[J]. 力学学报, 2021, 53(7): 1829–1841. doi: 10.6052/0459-1879-21-094

    TONG F L, DUAN J Y, ZHOU G Y, et al. Statistical characteristics of pressure fluctuation in shock wave and turbulent boundary layer interaction[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1829–1841. doi: 10.6052/0459-1879-21-094
    [4] 陈苏宇. 高超声速压缩拐角气动热环境研究[D]. 绵阳: 中国空气动力研究与发展中心, 2014.

    CHEN S Y. Investigation of aerothermal environment of hypersonic compression corners[D]. Mianyang: China Aerodynamics Research and Development Center Graduate School, 2014.
    [5] 李素循, 倪招勇. 高超声速层流干扰流场研究[J]. 宇航学报, 2003, 24(6): 547–551. doi: 10.3321/j.issn:1000-1328.2003.06.001

    LI S X, NI Z Y. Investigation of laminar interactive flowfield in hypersonic flow[J]. Journal of Astronautics, 2003, 24(6): 547–551. doi: 10.3321/j.issn:1000-1328.2003.06.001
    [6] WIETING A, HOLDEN M. Experimental study of shock wave interference heating on a cylindrical leading edge at Mach 6 and 8[C]// Proc of the 22nd Thermophysics Conference. 1987. doi: 10.2514/6.1987-1511
    [7] HOLDEN M, MOSELLE J, WIETING A, et al. Studies of aerothermal loads generated in regions of shock/shock interaction in hypersonic flow[C]//Proc of the 26th Aerospace Sciences Meeting. 1988. doi: 10.2514/6.1988-477
    [8] 潘沙, 田正雨, 冯定华, 等. 超燃冲压发动机唇口气动热计算研究与分析[J]. 航空动力学报, 2009, 24(9): 2096–2100. doi: 10.13224/j.cnki.jasp.2009.09.030

    PAN S, TIAN Z Y, FENG D H, et al. Computation and analysis of aeroheating of scramjet inlet cowl lip[J]. Journal of Aerospace Power, 2009, 24(9): 2096–2100. doi: 10.13224/j.cnki.jasp.2009.09.030
    [9] 肖丰收, 李祝飞, 朱雨建, 等. 第Ⅳ类激波-激波干扰非定常性及其敏感因素分析[J]. 空气动力学学报, 2017, 35(1): 20–26. doi: 10.7638/kqdlxxb-2015.0028

    XIAO F S, LI Z F, ZHU Y J, et al. Numerical investigation on some key factors for the unsteady type Ⅳ shock-shock interaction[J]. Acta Aerodynamica Sinica, 2017, 35(1): 20–26. doi: 10.7638/kqdlxxb-2015.0028
    [10] 张恩来, 李祝飞, 李一鸣, 等. 斜激波入射V形钝前缘溢流口激波干扰研究[J]. 实验流体力学, 2018, 32(3): 50–57. doi: 10.11729/syltlx20180002

    ZHANG E L, LI Z F, LI Y M, et al. Investigation on the shock interactions between an incident shock and a plate with V-shaped blunt leading edge[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 50–57. doi: 10.11729/syltlx20180002
    [11] HOLDEN M S. Studies of scramjet performance in the LENS facilities[C]//Proc of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibition. 2000: 3604.
    [12] 黎作武. NNLD算法在高超声速气动热计算中的确认与验证[C]//第七届全国流体力学学术会议论文摘要集. 2012: 126.
    [13] 张涵信. 关于 CFD 高精度保真的数值模拟研究[J]. 空气动力学学报, 2016, 34(1): 1–4. doi: 10.7638/kqdlxxb-2015.0211

    ZHANG H X. Investigations on fidelity of high order accurate numerical simulation for computational fluid dynamics[J]. Acta Aerodynamica Sinica, 2016, 34(1): 1–4. doi: 10.7638/kqdlxxb-2015.0211
    [14] 姜振华, 阎超. 高超声速热流高精度数值模拟方法[J]. 北京航空航天大学学报, 2011, 37(12): 1529–1533. doi: 10.13700/j.bh.1001-5965.2011.12.002

    JIANG Z H, YAN C. High order accurate methods in numerical simulation of hypersonic heat transfer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(12): 1529–1533. doi: 10.13700/j.bh.1001-5965.2011.12.002
    [15] HOLDEN M S. Ground test measurements of jet interaction effects on AIT interceptors at fully duplicated flight conditions[C]//Proc of the 8th DOD Electromagnetic Windows Symposium. 2000.
    [16] 徐大军, 蔡国飙, 乐川. 吸气式高超声速飞行器气动热试验研究[J]. 宇航学报, 2006, 27(5): 1004–1009,1095. doi: 10.3321/j.issn:1000-1328.2006.05.037

    XU D J, CAI G B, YUE C. Aeroheating experiment for airbreathing hypersonic vehicle[J]. Journal of Astronautics, 2006, 27(5): 1004–1009,1095. doi: 10.3321/j.issn:1000-1328.2006.05.037
    [17] 陈坚强. 国家数值风洞(NNW)工程关键技术进展[J]. 中国科学:技术科学, 2021, 51(11): 1326–1347.

    Chen J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J]. Scientia Sinica: Technologica, 2021, 51(11): 1326–1347.
    [18] YAMAMOTO Y. Numerical and experimental aerothermo-dynamics of strong hypersonic shock-shock interactions[C]//Proc of the 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. 2002. doi: 10.2514/6.2002-2891
    [19] 贾居红. 临近空间高超声速气动热数值模拟研究[D]. 北京: 北京理工大学, 2016.

    JIA J H. Numerical study on hypersonic aerothermodynamic of near-space flight vehicle[D]. Beijing: Beijing Institute of Technology, 2016.
    [20] 曾磊. 测热试验数据后处理方法及误差机理分析[D]. 绵阳: 中国空气动力研究与发展中心研究生部, 2012.

    ZENG L. Study on data processing method and error mechanism analysis of heat flux measurement in wind tunnel[D]. Mianyang: China Aerodynamics Research and Development Center Graduate School. 2012.
    [21] 朱广生, 聂春生, 曹占伟, 等. 气动热环境试验及测量技术研究进展[J]. 实验流体力学, 2019, 33(2): 1–10. doi: 10.11729/syltlx20180137

    ZHU G S, NIE C S, CAO Z W, et al. Research progress of aerodynamic thermal environment test and measurement technology[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 1–10. doi: 10.11729/syltlx20180137
    [22] 钱炜祺, 周宇, 邵元培. 表面热流辨识结果的误差分析与估计[J]. 空气动力学学报, 2020, 38(4): 687–693. doi: 10.7638/kqdlxxb-2018.0185

    QIAN W Q, ZHOU Y, SHAO Y P. Error analysis of surface heat flux estimation[J]. Acta Aerodynamica Sinica, 2020, 38(4): 687–693. doi: 10.7638/kqdlxxb-2018.0185
    [23] MAVRIPLIS D J. Progress in CFD discretizations, algorithms and solvers for aerodynamic flows[C]//Proc of the AIAA Aviation 2019 Forum. 2019. doi: 10.2514/6.2019-2944
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  73
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-11
  • 修回日期:  2023-01-31
  • 录用日期:  2023-02-08
  • 网络出版日期:  2023-06-12

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日