留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直升机涡环状态边界风洞试验研究

王畅 马帅 黄志银 王浩文 黄志远 邓皓轩

王畅, 马帅, 黄志银, 等. 直升机涡环状态边界风洞试验研究[J]. 实验流体力学, 2023, 37(5): 76-92 doi: 10.11729/syltlx20220055
引用本文: 王畅, 马帅, 黄志银, 等. 直升机涡环状态边界风洞试验研究[J]. 实验流体力学, 2023, 37(5): 76-92 doi: 10.11729/syltlx20220055
WANG C, MA S, HUANG Z Y, et al. A wind tunnel investigation of the helicopter vortex ring state boundary[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 76-92 doi: 10.11729/syltlx20220055
Citation: WANG C, MA S, HUANG Z Y, et al. A wind tunnel investigation of the helicopter vortex ring state boundary[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 76-92 doi: 10.11729/syltlx20220055

直升机涡环状态边界风洞试验研究

doi: 10.11729/syltlx20220055
基金项目: 国家自然科学基金面上项目(11672323)
详细信息
    作者简介:

    王畅:(1985—),男,河北邢台人,博士研究生。研究方向:直升机空气动力学。通信地址:北京市海淀区清华大学蒙民伟科技大楼北楼航天航空学院N103(100008)。E-mail:chang-wa18@mails.tsinghua.edu.cn

    通讯作者:

    E-mail:doheheyzh@sina.com

  • 中图分类号: V212.4

A wind tunnel investigation of the helicopter vortex ring state boundary

  • 摘要: 本文对直升机涡环状态边界进行了系统的分析与研究。首先,剖析了涡环状态事故的成因,阐述了其在飞行特性、旋翼性能、桨盘入流、涡系结构等方面的物理机制,指出涡环状态下安全隐患的主要诱因是桨尖涡受挤压形成集中涡,使桨盘面上诱导入流相对垂向来流占优,造成旋翼拉力负阻尼与性能损失,导致浮沉运动失稳。然后,对比了各类涡环状态边界的差异性和适用性,指出现有边界预测模型存在建模方式主观性强和试验数据离散度高的问题,并提出了改进思路。最后,设计并开展了模拟下降飞行的旋翼风洞试验。试验结果显示:涡环状态下出现了旋翼拉力负阻尼、拉力损失和功率沉陷现象,旋翼拉力损失最高达30%,旋翼产生维持机体重量拉力的需用功率约为悬停功率的 160%。以特情防范实践中关注的旋翼拉力负阻尼和拉力性能损失为指标,从试验结果中提取了涡环状态边界临界速度离散点。在涡环状态边界预测模型构建中区分水平来流、垂向来流和诱导入流对桨尖涡驱动作用的强弱,并计入不同前进比下动量理论的修正和桨尖涡运动阈值的差异,基于试验值采用最小二乘法确定了模型参数,建立了半经验化的涡环状态边界预测模型,模型预测结果与风洞试验结果吻合较好,且符合飞行试验规律。本文对认识涡环状态特情和预防涡环状态事故具有现实意义。
  • 图  1  3种涡环状态边界对比

    Figure  1.  Comparison of three kinds of vortex ring state boundaries commonly used in Engineering

    图  2  CEV增大下降速度进入涡环状态的试飞方式[18]

    Figure  2.  Flight test mode with increasing descent speed to enter vortex ring state applied by CEV[18]

    图  3  穿越涡环状态过程中总距、前飞速度、下降速度的时间历程[18]

    Figure  3.  Time history of collective pitch, forward flight speed and descent speed during vortex ring state[18]

    图  4  CEV降低前飞速度进入涡环状态的试飞方式[18]

    Figure  4.  Flight test mode with reducing forward speed to enter vortex ring state applied by CEV[18]

    图  5  平直前飞与涡环状态下操纵与加速度时间历程对比[18]

    Figure  5.  Comparison of control and acceleration time history when entering vortex ring state[18]

    图  6  涡环状态下直升机对总距提升的响应[18]

    Figure  6.  Response of helicopter to collective pitch increase in vortex ring state

    图  7  垂直下降状态旋翼拉力和扭矩随等效下降速度变化(总距恒定)[44]

    Figure  7.  Variation of rotor thrust and torque with equivalent descent speed under vertical descent (constant collective pitch control)[44]

    图  8  垂直下降阶段旋翼总距和功率随下降速度变化(拉力恒定)[45]

    Figure  8.  Variation of rotor collective pitch and required power with descent rate under vertical descent (constant thrust)[45]

    图  9  旋翼在涡环状态的入流模型[19]

    Figure  9.  Inflow model of rotor in vortex ring state[19]

    图  10  垂直下降状态旋翼剖面速度矢量图[52]

    Figure  10.  velocity vector diagram in vertical descent state[52]

    图  11  下降飞行过程中桨尖涡的结构演化[53-54]

    Figure  11.  Structural evolution of blade tip vortex during descending flight[53-54]

    图  12  Wolkovitch对桨尖涡运动速度的假设[55]

    Figure  12.  Wolkovitch's hypothesis on the velocity of blade tip vortex[55]

    图  13  Wolkovitch与Dress 边界对比[55-56]

    Figure  13.  Comparison of Wolkovitch and Dress boundaries[55-56]

    图  14  Peters对桨盘处流动的假设[59]

    Figure  14.  Peters′ assumption of flow at the disc[59]

    图  15  Peters涡环状态边界[59]

    Figure  15.  Peters vortex ring state boundary[59]

    图  16  Newman给出的涡环状态边界[61]

    Figure  16.  State boundary of vortex ring given by Newman[61]

    图  17  高−辛涡环状态边界[14]

    Figure  17.  Gao−Xin vortex ring state boundary[14]

    图  18  ONERA涡环状态边界[18]

    Figure  18.  ONERA vortex ring state boundary[18]

    图  19  NASA涡环状态边界[19]

    Figure  19.  NASA vortex ring state boundary[19]

    图  20  风洞试验照片

    Figure  20.  Wind tunnel test photo

    图  21  试验风速与下滑角示意图

    Figure  21.  Schematic diagram of glide angle between test wind speed and rotor

    图  22  旋翼在垂直下降状态的气动特性

    Figure  22.  Aerodynamic characteristics of each rotor in vertical descent

    图  23  1号旋翼在不同下滑角下的气动特性

    Figure  23.  Aerodynamic characteristics of No. 1 rotor at different glide angles

    图  24  2号旋翼在40°下滑角下的拉力特性

    Figure  24.  Thrust characteristics of rotor 2 at 40 ° glide angle

    图  25  从风洞试验数据提取的涡环状态边界

    Figure  25.  Vortex ring state boundary extracted from wind tunnel test data

    图  26  式(14)计算的涡环状态边界与风洞试验和CEV飞行试验结果对比

    Figure  26.  Comparison of vortex ring state boundary calculated by equation 14 with wind tunnel test results and CEV flight test results

    表  1  国内外已开展的涡环状态旋翼性能测量试验

    Table  1.   Tests of rotor performance in vortex ring state

    研究者时间参考
    文献
    桨叶
    片数
    旋翼半径
    /mm
    旋翼转速
    /(r﹒min−1)
    扭转角/(°)下降姿态试验环境
    Castles、Gray1951[45]3610、9141200、16000、−12垂直下降直径2.74 m风洞
    Mort、Yaggy1963[46]31448、1829700~1410、
    700~1100
    −22.4、
    −46.6
    斜下降、垂直下降NFAC
    Washizu、Azuma、Koo等1966[47]35491000−8.33斜下降、垂直下降滑轨
    Azuma、Obata1968[44]35501000−8,0垂直下降直径3 m风洞
    Empey、Ormiston1974[48]2162132500斜下降、垂直下降2.13 m × 3 m风洞
    辛宏、高正1993-1996[14-16]25491406 0、 −5.5、−9.22斜下降、垂直下降悬臂机
    Betzina2001[49]36101800−41斜下降、垂直下降NFAC
    下载: 导出CSV

    表  2  旋翼模型参数

    Table  2.   Parameters of rotor models

    编号半径/mm弦长/mm扭转角/(°)桨尖形状翼型厚度转速/(r﹒min−1)
    15501350抛物线后掠12%3000
    2550135−8抛物线后掠11.3%3000
    3550135−8抛物线后掠12%2600
    445097−6.7矩形14%3700
    下载: 导出CSV
  • [1] 陆洋, 高正. 直升机涡环状态边界与飞行安全[J]. 航空科学技术, 2008, 15(5): 14–17. doi: 10.3969/j.issn.1007-5453.2008.05.004

    LU Y, GAO Z. Helicopter Vortex-Ring state boundary and flight safety[J]. Aeronautical Science and Technology, 2008, 15(5): 14–17. doi: 10.3969/j.issn.1007-5453.2008.05.004
    [2] 赵秀云. 直升机垂直下降的涡环边界分析[C]//98珠海航空学术会议第14届全国直升机年会论文集. 1998.
    [3] KISOR R, BLYTH R, BRAND A, et al. V-22 low speed/high rate of descent test summary[C]//American Helicopter Society Annual. 2004.
    [4] NORIHIRO G, SHINSUKE E, TOSHIYUKI I, et al. Aircraft accident investigation report[R]. Japan Transport Safety Board, 2013.
    [5] HELLNER C, KJELLBERG U, HELLSTRÖM C R. Accident involving helicopter type 11 no 334 (Agusta Bell 412HP) over Bottensjön, Karlsborg, O county, Sweden, on 25 March 2003 [R]. Report RM 2005: 01e, 2005.
    [6] Report on the accident to AS332 L2 Super Puma helicopter, G-WNSB on approach to Sumburgh Airport on 23 August 2013[R/OL]. Aircraft Accident Report No: 1/2016. (2016-03-15)[2022-06-27]. https://assets.publishing.service.gov.uk/media/56f169aa40f0b6038500001e/Eurocopter_AS332_L2_Super_Puma_G-WNSB_04-16.pdf
    [7] Aerossurance. French cougar crashed after entering VRS when coming into hover[EB/OL]. (2021-10-3)[2022-10-28]. https://aerossurance.com/helicopters/alat-cougar-fatal-hover-vrs.
    [8] КОМИТЕТ М А. Окончательный отчет вертолет Ми-8Т[R]. RA-24255, 2014.
    [9] КОМИТЕТ М А. По результатам расследования авиационного происшествия[R]. RA-06029, 2018.
    [10] 王畅, 程蒙, 马帅. 直升机尾桨失效事故案例分析[J]. 重庆交通大学学报(自然科学版), 2022, 41(4): 126–132. doi: 10.3969/j.issn.1674-0696.2022.04.19

    WANG C, CHENG M, MA S. Case study on accident caused by loss of tail-rotor effectiveness[J]. Journal of Chongqing Jiaotong University(Nature Science), 2022, 41(4): 126–132. doi: 10.3969/j.issn.1674-0696.2022.04.19
    [11] 费景荣. 某型直升机异常离地状态的尾桨涡环特性分析[J]. 空军工程大学学报, 2022, 23(1): 79–82. doi: 10.3969/j.issn.1009-3516.2022.01.011

    FEI J R. An analysis of characteristics of tail rotor vortex ring in an abnormal lift off state for a certain type of helicopter[J]. Journal of Air Force Engineering University, 2022, 23(1): 79–82. doi: 10.3969/j.issn.1009-3516.2022.01.011
    [12] AIRBUS. The H160 opened a new chapter in the history of Airbus helicopters. Joining its rotorcraft product range in a size that is positioned between the company’s H145 and H175, this innovative medium helicopter became the first member of the H generation[EB/OL]. [2022-10-28]. https://www.airbus.com/en/products-services/helicopters/civil-helicopters/h160.
    [13] BASSET P M, CHEN C, PRASAD J V R, et al. Prediction of vortex ring state boundary of a helicopter in descending flight by simulation[J]. Journal of the American Helicopter Society, 2008, 53(2): 139–151. doi: 10.4050/JAHS.53.139
    [14] 辛宏, 高正. 直升机涡环区域边界包线的确定[J]. 气动实验与测量控制, 1996, 10(1): 14–19.
    [15] XIN H, GAO Z. An experimental investigation of model rotors operating in vertical descent[C]//Proc of 19th European Rotorcraft Forum. 1993.
    [16] XIN H, GAO Z. A prediction of the vortex-ring state boundary based on model tests[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 1994, 11(2): 159–164.
    [17] JIMENEZ J, DESOPPER A, TAGHIZAD A, et al. Induced velocity model in steep descent and vortex-ring state prediction[C]//8th European Rotorcraft Forum Proceedings. 2002.
    [18] TAGHIZAD A, JIMENEZ J, BINET L, et al. Experimental and theoretical investigations to develop a model of rotor aerodynamics adapted to steep descents[C]//Proc of Presented at the American Helicopter Society 58th Annual Forum. 2002.
    [19] JOHNSON W. Model for vortex ring state influence on rotorcraft flight dynamics[C]// Proc of AHS 4th Decennial Specialists' Conference on Aeromechanics. 2004.
    [20] JOHNSON W. Rotorcraft aeromechanics[M]. Cambridge: Cambridge University Press, 2013.
    [21] 孙文胜, 胡凯亮, 张泰峰, 等. 直升机舰载飞行涡环边界的确定[J]. 科技创新导报, 2010, 7(7): 107. doi: 10.3969/j.issn.1674-098X.2010.07.090
    [22] 胡奉言, 陈铭, 邹思汉, 等. 直升机尾桨涡环状态边界研究[C]//湖南省力学学会2015学术年会论文集. 2015.
    [23] 马鸿儒, 穆志韬, 李洪伟, 等. 基于桨盘倾角的直升机涡环状态边界修正计算方法[J]. 空气动力学学报, 2018, 36(1): 31–34. doi: 10.7638/kqdlxxb-2015.0203

    MA H R, MU Z T, LI H W, et al. Revised calculation method for helicopter vortex-ring state boundary based on flight attitude[J]. Acta Aerodynamica Sinica, 2018, 36(1): 31–34. doi: 10.7638/kqdlxxb-2015.0203
    [24] VARNES D J. Development of a helicopter vortex ring statewarning system through a moving map display computer[D]. Monterey: Naval Postgraduate School, 1999.
    [25] KISOR R L. Control system for rotorcraft for preventing the vortex ring state: US6880782[P]. 2005-04-19.
    [26] ABILDGAARD M, BINET L. Active sidesticks used for VRS avoidance[C]// Proc of European Rotorcraft Forum (ERF). 2009.
    [27] BINET L, ABILDGAARD M, TAGHIZAD A, et al. VRS avoidance as active function on side-sticks[C]// Proc of American Helicopter Society 65th annual forum. 2009.
    [28] DANG-VU B. Vortex ring state protection flight control law[C]// Proc of 39th European Rotorcraft Forum. 2013.
    [29] KISOR R L. Method and apparatus for preventing adverse effects of vortex ring state: EP1620311 [P]. 2013-12-18.
    [30] 陈坚强. 基于神经网络的直升机涡环告警方法研究[D]. 南京: 南京航空航天大学, 2018.

    CHEN J Q. Research on helicopter vortex ring warning method based on neural network[D]. Nanjing: University of Aeronautics and Astronautics, 2018.
    [31] 李高华. 直升机旋翼涡环状态流场高分辨率数值模拟方法研究[D]. 上海: 上海交通大学, 2018.

    LI G H. Study of high resolution numerical method for helicopter rotor in vortex ring state[D]. Shanghai: Shanghai Jiao Tong University, 2018.
    [32] STRYCZNIEWICZ W, SURMACZ K. Badania eksperymentalne stanu pierścienia wirowego na wirniku nośnym śmigłowca metodą anemometrii obrazowej (PIV)[J]. Transactions of the Institute of Aviation, 2014, 235(2): 17–27. doi: 10.5604/05096669.1130234
    [33] Surmacz K, Ruchała P, Stryczniewicz W. Wind tunnel tests of the development and demise of Vortex Ring State of the rotor[C]//Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues, Proceedings of the 3rd Polish Congress of Mechanics (PCM) and 21st International Conference on Computer Methods in Mechanics (CMM). 2015: 8-11.
    [34] 陆洋, 高正, 黄文明, 等. 直升机涡环状态边界的飞行试验研究[J]. 南京航空航天大学学报, 2001, 33(5): 405–409. doi: 10.3969/j.issn.1005-2615.2001.05.001

    LU Y, GAO Z, HUANG W M, et al. Flight test investigation of helicopter Vortex-Ring state boundary[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2001, 33(5): 405–409. doi: 10.3969/j.issn.1005-2615.2001.05.001
    [35] BRAND A, DREIER M, KISOR R, et al. The nature of vortex ring state[J]. Journal of the American Helicopter Society, 2011, 56(2): 22001. doi: 10.4050/JAHS.56.022001
    [36] DE BOTHEZAT G. The general theory of blade screws including propellers, fans, helicopter screws, helicoidal pumps, turbo-motors, and different kinds of helicoidal blades[R]. NACA-TR-29, 2013.
    [37] HUNT H H. Aerodynamics for Naval Aviators: NAVWEPS 00-80T-80[M]. Ravenio Books, 2016.
    [38] SHEVELL, R S. Fundamentals of Flight [M]. New Jersey: Prentice Hall, Inc. , 1988.
    [39] ADMINISTRATION F A. Rotorcraft flying handbook[M]. New York: Skyhorse Publishing Inc. , 2007.
    [40] Transport Canada. helicopter flight training manual. Second Edition) [M]. Transport Canada, 2006.
    [41] Federal Aviation Administration. Helicopter Flying Handbook: FAA-H-8083-21B[M]. Independently published, 2022.
    [42] REEDER J P, GUSTAFSON F B. On the flying qualities of helicopters[R]. NACA-TN-1799, 1949.
    [43] STEWART W. Helicopter behaviour in the vortex-ring conditions[R]. R. &M. No. 3117, 1959.
    [44] AZUMA A, OBATA A. Induced flow variation of the helicopter rotor operating in the vortex ring state[J]. Journal of Aircraft, 1968, 5(4): 381–386. doi: 10.2514/3.43954
    [45] CASTLES W Jr, GRAY R B. Empirical relation between induced velocity, thrust, and rate of descent of a helicopter rotor as determined by wind-tunnel tests on four model rotors[R]. NACA-TN-2474, 1951.
    [46] MORT K W, YAGGY P F. Wind-tunnel tests of two vtol propellers in descent[R]. NASA-TN-D-1766, 1963.
    [47] WASHIZU K, AZUMA A, KOO J, et al. Experiments on a model helicopter rotor operating in the vortex ringstate[J]. Journal of Aircraftdoi, 1966, 3(3): 225–230. doi: 10.2514/3.43729
    [48] EMPEY R W, ORMISTON R A, USAAMRDL, et al. Tail rotor thrust on a 5.5 Ft. helicopter model in ground effect[C]// Proc of Presented at the 30th Annual National Forum. 1974.
    [49] BETZINA M D. Tiltrotor descent aerodynamics: a small-scale experimental investigation of vortex ring state[C]// Proc of American Helicopter Society 57th Annual Forum. 2001.
    [50] STALEWSKI W, SURMACZ K. Investigations of the vortex ring state on a helicopter main rotor based on computational methodology using URANS solver[C]// Proc of 9th EASN International Conference on “Innovation in Aviation & Space”. 2019. doi: 10.1051/matecconf/201930402011.
    [51] PADFIELD G D. Helicopter flight dynamics: including a treatment of tiltrotor aircraft[J]. The Aeronautical Journal, 2018, 123(1266): 1333–1334. doi: 10.1017/aer.2019.103
    [52] 黄明其, 王亮权, 何龙, 等. 旋翼涡环状态气动特性和参数变化的风洞试验[J]. 航空动力学报, 2019, 34(11): 2305–2315. doi: 10.13224/j.cnki.jasp.2019.11.001

    HUANG M Q, WANG L Q, HE L, et al. Wind tunnel test of aerodynamic characteristics and parametric variation for rotor in vortex ring state[J]. Journal of Aerospace Power, 2019, 34(11): 2305–2315. doi: 10.13224/j.cnki.jasp.2019.11.001
    [53] LEISHMAN J G, BHAGWAT M J, ANANTHAN S. Free-vortex wake predictions of the vortex ring state for single-rotor and multi-rotor configurations[C]//AHS International, 58th Annual Forum Proceedings. 2002.
    [54] BROWN R E, NEWMAN S J, PERRY F J. Blade twist effects on rotor behaviour in the vortex ring state[C]// Proc of 28th European Rotorcraft Forum. 2002.
    [55] WOLKOVITCH J. Analytical prediction of vortex-ring boundaries for helicopters in steep descents[J]. Journal of the American Helicopter Society, 1972, 17(3): 13–19. doi: 10.4050/JAHS.17.13
    [56] DREES J M. A theory of airflow through rotors and its application to some helicopter problems[J]. Journal of the Helicopter Association of Great Britain, 1949, 3(2): 79–104.
    [57] DREES J M, LUCASSEN L R, HENDAL W P. Airflow through helicopter rotors in vertical flight[M]. Netherlands: Nationaal Lucht-en Ruimtevaartlaboratorium, 1949.
    [58] DREES J M. The field of flow through a helicopter rotor obtained from wind tunnel smoke tests[J]. Aircraft Engineering, 1951, 23(266): 107–111.
    [59] PETERS D A, CHEN S Y. Momentum theory, dynamic inflow, and the vortex-ring state[J]. Journal of the American Helicopter Society, 1982, 27(3): 18–24. doi: 10.4050/JAHS.27.18
    [60] GESSOW A, MYERS G C. Aerodynamics of the Helicopter[M]. New York: Frederick Ungar, 1967.
    [61] NEWMAN S, RICHARD B, JOHN P, et al. Predicting the onset of wake breakdown for rotors in descending flight[J]. Journal of the American Helicopter Societydoi, 2003, 48(1): 28-38. doi: 10.4050/JAHS.48.28.
  • 加载中
图(26) / 表(2)
计量
  • 文章访问数:  267
  • HTML全文浏览量:  169
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-27
  • 修回日期:  2022-08-26
  • 录用日期:  2022-10-13
  • 网络出版日期:  2023-06-15
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日