留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用于高气压运行的片式电弧加热器初步研究

杨鸿 姚峰 朱超 朱涛 陈德江

杨鸿,姚峰,朱超,等. 应用于高气压运行的片式电弧加热器初步研究[J]. 实验流体力学,2022,36(6):74-82 doi: 10.11729/syltlx20220060
引用本文: 杨鸿,姚峰,朱超,等. 应用于高气压运行的片式电弧加热器初步研究[J]. 实验流体力学,2022,36(6):74-82 doi: 10.11729/syltlx20220060
YANG H,YAO F,ZHU C,et al. A preliminary study of segmented arc heater used for high pressure operation[J]. Journal of Experiments in Fluid Mechanics,2022,36(6):74-82. doi: 10.11729/syltlx20220060
Citation: YANG H,YAO F,ZHU C,et al. A preliminary study of segmented arc heater used for high pressure operation[J]. Journal of Experiments in Fluid Mechanics,2022,36(6):74-82. doi: 10.11729/syltlx20220060

应用于高气压运行的片式电弧加热器初步研究

doi: 10.11729/syltlx20220060
详细信息
    作者简介:

    杨鸿:(1973—),男,四川遂宁人,研究员。研究方向:防热试验。通信地址:四川省绵阳市涪城区二环路南段6号15信箱504分箱(621000)。E-mail:yanghong@cardc.cn

    通讯作者:

    E-mail:yanghong@cardc.cn

  • 中图分类号: V211.72

A preliminary study of segmented arc heater used for high pressure operation

  • 摘要: 片式电弧加热器模拟焓值范围宽,是开展热防护试验的理想设备。为拓宽其压力模拟范围,开展了片式电弧加热器内流分析方法研究,并与片式电弧加热器高气压试验进行了对比,结果吻合较好。为解决高气压运行试验出现的问题,研制了耐压、耐高热流压缩片,增强了压缩片的冷却效果,短化了片式电弧加热器电极,采取内壁防护措施使表面高温氧化产物减少和热量损失降低。探索高气压片式电弧加热器运行模式,解决了高气压运行串弧问题。试验的运行压力超过10 MPa,单电极运行电弧电流超过5000 A,提高了片式电弧加热器的试验能力。
  • 图  1  研究流程图

    Figure  1.  Flow diagram of research

    图  2  高气压片式电弧加热器示意图

    Figure  2.  Schematic diagram of segmented arc heater

    图  3  有限差分网格

    Figure  3.  Finite difference grid

    图  4  计算与试验数据对比

    Figure  4.  Comparison of calculation and test results

    图  5  压力对辐射热流影响

    Figure  5.  Effect of pressure on radiant heat flow

    图  7  压力对焓分布的影响

    Figure  7.  Effect of pressure on enthalpy distribution

    图  6  压力对壁面热流影响

    Figure  6.  Effect of pressure on wall heat flux

    图  8  压力对电场强度的影响

    Figure  8.  Effect of pressure on electric intensity

    图  9  试验后的喷管

    Figure  9.  Nozzle after test

    图  10  电极内壳结构示意图

    Figure  10.  Schematic diagram of inner shell of electrode

    图  11  喷管内部试验前后

    Figure  11.  Nozzle internal before and after test

    表  1  国外大功率片式电弧加热设备的参数

    Table  1.   Parameter of foreign high-power segmented arc heater

    设备Pmax/MWH0/(MJ·kg−1p0/MPa
    Ames IHF427.0~46.40.10~1.01
    Scirocco PWT702.5~45.00.10~1.67
    AEDC H3681.4~19.80.10~19.60
    下载: 导出CSV

    表  2  典型车次的参数表

    Table  2.   Operation parameters of the arc heater

    车次I/AG/(kg·s−1p0/MPa
    114000.710.20
    225002.47.60
    328004.16.40
    430004.51.80
    530003.83.90
    652001.81.20
    下载: 导出CSV
  • [1] HOCHREIN G, G WRIGHT J Jr. Analysis of the TATER nosetip boundary layer transition and ablation experiment[C]//Proc of the 14th Aerospace Sciences Meeting. 1976. doi: 10.2514/6.1976-167
    [2] 陈连忠, 欧东斌, 高贺, 等. 高超声速飞行器热防护电弧风洞气动加热试验技术[M]. 北京: 科学出版社, 2020: 27-48.

    CHEN L Z, OU D B, GAO H, et al. Aerodynamic heating test technology of thermal protection arc wind tunnel for hypersonic vehicle[M]. Beijing: Science Press, 2020: 27-48.
    [3] BALTER-PETERSON A, NICHOLS F, MIFSUD B, et al. Arc jet testing in NASA Ames Research Center thermo-physics facilities[C]//Proc of the AlAA 4th International Aerospace Planes Conference. 1992. doi: 10.2514/6.1992-5041
    [4] VOTTA R,MARINI M,FILIPPIS F D,et al. Design and feasibility of ExoMars supersonic parachute scirocco test[J]. Journal of Spacecraft and Rockets,2010,47(6):981-993. doi: 10.2514/1.50230
    [5] FILIPPIS F D, VECCHIO A, CARISTIA S. Scirocco plasma wind tunnel: low enthalpy by use of cold air transverse injection[R]. AIAA 2003-6959, 2003.
    [6] PURPURA C. CIRA PWT user manual[R]. CIRA-UM-04-008, 2003.
    [7] HORN D D, SMITH B T. Result of testing the AEDC 5-MW segmented arc heater at pressures up to 171 atm[R]. AD-A017 288, 1975.
    [8] SMITH D M, YOUNKER T. Comparative ablation testing of carbon phenolic TPS materials in the AEDC-H1 arcjet[C]//Proc of the AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Con- ference. 2005. doi: 10.2514/6.2005-3263
    [9] SHEELEY J, WHITTINGHAM K, MONTGOMERY P, et al. Extending arc heater operating pressure range for improved reentry simulation[C]//Proc of the 25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2006. doi: 10.2514/6.2006-3295
    [10] Arnold Air Force Base. AEDC 2008 Annual Report[R]. 2009.
    [11] 陈连忠,张友华. 电弧加热设备的类型及趋势[J]. 宇航材料工艺,2011(2):34-42. doi: 10.3969/j.issn.1007-2330.2011.02.010

    CHEN L Z,ZHANG Y H. Types and trend of arc heater facility[J]. Aerospace Materials & Technology,2011(2):34-42. doi: 10.3969/j.issn.1007-2330.2011.02.010
    [12] DUBREUS T, SHEELEY J, STEWART J. Development of a mid-pressure arc-heated facility for hypersonic vehicle testing[C]//Proc of the U. S. Air Force T&E Days 2010. 2010. doi: 10.2514/6.2010-1732
    [13] 国义军, 石卫波, 曾磊, 等. 高超声速飞行器烧蚀防热理论与应用[M]. 北京: 科学出版社, 2019: 433-443.

    GUO Y J, SHI W B, ZENG L, et al. Mechanism of ablative thermal protection applied to hypersonic vehicles[M]. Beijing: Science Press, 2019: 433-443.
    [14] 杨远剑,陈德江,赵文峰,等. 电弧风洞转动部件动密封试验[J]. 空气动力学学报,2017,35(6):828-831. doi: 10.7638/kqdlxxb-2015.0147

    YANG Y J,CHEN D J,ZHAO W F,et al. Seal comple-mentation test for rotatable parts in arc heated wind tunnel[J]. Acta Aerodynamica Sinica,2017,35(6):828-831. doi: 10.7638/kqdlxxb-2015.0147
    [15] 杨鸿,罗跃,吴东,等. 电弧加热器超声速湍流平板烧蚀流场变化研究[J]. 实验流体力学,2018,32(4):72-77. doi: 10.11729/syltlx20170181

    YANG H,LUO Y,WU D,et al. Study on supersonic turbulence plate ablation flow field in arc heater[J]. Journal of Experiments in Fluid Mechanics,2018,32(4):72-77. doi: 10.11729/syltlx20170181
    [16] 姚峰,朱超,陈德江,等. 直流电弧加热器多电极运行技术试验研究[J]. 实验流体力学,2014,28(3):82-86. doi: 10.11729/syltlx20130048

    YAO F,ZHU C,CHEN D J,et al. Experimental research of arc heater with multiple electrodes[J]. Journal of Experi-ments in Fluid Mechanics,2014,28(3):82-86. doi: 10.11729/syltlx20130048
    [17] LIN X,OU D B,PENG J L,et al. Cooling-water leakage diagnosis using optical emission spectroscopy for a large-scale arc-heated facility[J]. Journal of Thermophysics and Heat Transfer,2019,33(4):900-906. doi: 10.2514/1.T5651
    [18] PEGOT E B, WATSON V. Numerical calculations for the characteristics of a gas flowing axially through a constricted arc[R]. NASA TN D-4042, 1967.
    [19] NICOLET W, SHEPARD C, CLARK K, et al. Analytical and design study for a high-pressure, high-enthalpy constricted arc heater[R]. AEDC-TR-75-47, 1975.
    [20] LEE J I,KIM C,KIM K H. Accurate computations of arc-heater flows using two-equation turbulence models[J]. Journal of Thermophysics and Heat Transfer,2007,21(1):67-76. doi: 10.2514/1.25495
    [21] KIM K H. Numerical investigation of plasma flows inside segmented constrictor type arc-heater[M]//Aeronautics and Astronautics. London: IntechOpen, 2011. doi: 10.5772/18769
    [22] 刘初平,隆永胜,白菡尘,等. 超燃冲压发动机电弧加热器试验流场调试[J]. 实验流体力学,2005,19(4):42-45. doi: 10.3969/j.issn.1672-9897.2005.04.008

    LIU C P,LONG Y S,BAI H C,et al. A preliminary study of the arc flow field for scramjet research[J]. Journal of Experiments in Fluid Mechanics,2005,19(4):42-45. doi: 10.3969/j.issn.1672-9897.2005.04.008
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  305
  • HTML全文浏览量:  130
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-28
  • 修回日期:  2022-08-30
  • 录用日期:  2022-09-06
  • 刊出日期:  2022-12-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日