留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超疏水电热复合表面防冰机理与特性实验研究

刘欣乐 李文丰 许德辰 蔡晋生

刘欣乐,李文丰,许德辰,等. 超疏水电热复合表面防冰机理与特性实验研究[J]. 实验流体力学,2022,36(X):1-11 doi: 10.11729/syltlx20220062
引用本文: 刘欣乐,李文丰,许德辰,等. 超疏水电热复合表面防冰机理与特性实验研究[J]. 实验流体力学,2022,36(X):1-11 doi: 10.11729/syltlx20220062
LIU X L,LI W F,XU D C,et al. Experimental investigation on anti-icing mechanism and characteristics of superhydrophobic electrothermal coupled surface[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-11. doi: 10.11729/syltlx20220062
Citation: LIU X L,LI W F,XU D C,et al. Experimental investigation on anti-icing mechanism and characteristics of superhydrophobic electrothermal coupled surface[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-11. doi: 10.11729/syltlx20220062

超疏水电热复合表面防冰机理与特性实验研究

doi: 10.11729/syltlx20220062
详细信息
    作者简介:

    刘欣乐:(1997—),男,河北衡水人,硕士研究生。研究方向:飞机防冰技术,实验流体力学。通信地址:陕西省西安市碑林区张家村街道友谊西路127号西北工业大学友谊校区翼型叶栅空气动力学国家级重点实验室(710072)。E-mail:1198856941@qq.com

    通讯作者:

    E-mail:caijsh@nwpu.edu.cn

  • 中图分类号: V244.1+5

Experimental investigation on anti-icing mechanism and characteristics of superhydrophobic electrothermal coupled surface

  • 摘要: 作为一种新型防冰技术,超疏水电热复合表面防冰具有良好的防冰效果和较低的能量消耗。基于超疏水表面水滴撞击及润湿特性,依据结冰表面热平衡理论,发展了超疏水电热复合表面防冰热流密度预测模型。在结冰风洞中开展了圆柱模型超疏水电热复合表面防冰实验研究,结果表明,防冰热流密度理论计算值与实验值之间的差别小于6%,验证了该预测模型的准确性。实验结果与能耗分析表明:与传统电加热方法相比,超疏水电热复合表面防冰能够有效降低防冰能耗;在风速10 m/s、液态水含量1 g/m3、水滴平均体积直径65 μm、温度−15 ℃条件下,超疏水表面能够有效防止回流冰形成;对于干、湿表面防冰,超疏水电热复合表面防冰比传统电加热方法能够分别降低约43%和33%的防冰能耗。
  • 图  1  结冰风洞中的防冰实验模型

    Figure  1.  Experimental model of anti-icing in icing wind tunnel

    图  2  结冰风洞中实验装置示意图

    Figure  2.  Schematic diagram of experimental device in icing wind tunnel

    图  3  接触角测量仪

    Figure  3.  Contact angle measuring instrument

    图  4  接触角测量仪测量结果

    Figure  4.  Measurement results

    图  5  水滴撞击实验平台

    Figure  5.  Water drop impact experimental platform

    图  6  水滴撞击不同润湿性表面的动态行为特征

    Figure  6.  Dynamic behavior characteristics of water droplets impacting surfaces with different wettabilities

    图  7  水滴以喷雾形式撞击不同润湿特性的表面

    Figure  7.  Water droplets impinge on surfaces of different wetting characteristics in the form of spray

    图  8  不同表面的形貌

    Figure  8.  Surface morphology of different surfaces

    图  9  超疏水表面防冰实验对照模型

    Figure  9.  Experimental model for superhydrophobic anti-icing

    图  10  超疏水表面防冰实验

    Figure  10.  Superhydrophobic anti-icing experiment

    图  11  超疏水表面防冰实验模型后缘结冰情况

    Figure  11.  Freezing condition of the trailing edge of the superhydro-phobic anti-icing experimental model

    图  12  电热防冰效果

    Figure  12.  Electrothermal anti-icing effect

    图  13  超疏水电热复合表面防冰效果

    Figure  13.  Composite anti-icing effect of super hydrophobic electric heating

    图  14  电热防冰实验温度分布

    Figure  14.  Temperature distributions of electrothermal anti-icing experi-ment

    图  15  超疏水电热复合表面防冰实验温度分布

    Figure  15.  Temperature distributions of and superhydrophobic electro-thermal composite anti-icing experiment

    表  1  结冰风洞基本性能参数

    Table  1.   Basic performance parameters of icing wind tunnel

    参数取值范围
    实验段尺寸700 mm(长)×304 mm(宽)×500 mm(高)
    风速5~18 m/s
    温度 −25~30 ℃
    液态水含量0.3~1.0 g/m3
    水滴平均体积直径10~100 μm
    下载: 导出CSV

    表  2  实验条件

    Table  2.   Experimental condition

    风速/(m·s−1温度/℃液态水含量
    /(g·m−3
    水滴平均体积
    直径/μm
    10−15,25165
    下载: 导出CSV

    表  3  不同防冰方法及干/湿表面条件下所需热流密度

    Table  3.   Heat flux required under different anti-icing methods and dry/wet surface conditions

    防冰方法及干/湿表面条件热流密度/(W·m−2
    电热−干表面防冰1923
    电热−湿表面防冰824
    超疏水电热−干表面防冰1099
    超疏水电热−湿表面防冰549
    超疏水电热−干表面防冰(理论计算值)1166.79
    下载: 导出CSV
  • [1] 卜雪琴,彭珑,林贵平,等. 热气防冰系统内表面弦向传热性能衰减规律[J]. 北京航空航天大学学报,2016,42(1):72-78. doi: 10.13700/j.bh.1001-5965.2015.0065

    BU X Q,PENG L,LIN G P,et al. Chordwise attenuation of heat transfer performance on inner surface of hot-air anti-icing system[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(1):72-78. doi: 10.13700/j.bh.1001-5965.2015.0065
    [2] 郁嘉,赵柏阳,卜雪琴,等. 某型飞机发动机短舱热气防冰系统性能数值模拟[J]. 空气动力学学报,2016,34(3):302-307. doi: 10.7638/kqdlxxb-2015.0212

    YU J,ZHAO B Y,BU X Q,et al. Numerical simulation of the performance of an engine nacelle hot-air anti-icing system[J]. Acta Aerodynamica Sinica,2016,34(3):302-307. doi: 10.7638/kqdlxxb-2015.0212
    [3] 卜雪琴,林贵平,郁嘉. 机翼电加热防冰表面内外传热的耦合计算[J]. 航空动力学报,2010,25(7):1491-1496. doi: 10.13224/j.cnki.jasp.2010.07.030

    BU X Q,LIN G P,YU J. Coupled heat transfer calculation on an airfoil electrothermal anti-icing surface[J]. Journal of Aerospace Power,2010,25(7):1491-1496. doi: 10.13224/j.cnki.jasp.2010.07.030
    [4] 胡林权. 民用飞机机翼电加热防/除冰应用现状及技术难点[J]. 航空科学技术,2016,27(7):8-11.

    HU L Q. Application status and technical difficulties for civil aircraft wing electrothermal anti-/ de-icing[J]. Aeronautical Science & Technology,2016,27(7):8-11.
    [5] 马莉娅,熊联友,刘立强,等. 用于碳纤维复合材料的电热除冰技术实验研究[J]. 航空学报,2012,33(1):54-61.

    MA L Y,XIONG L Y,LIU L Q,et al. Experimental study on electro-thermal deicing technique for carbon fiber composite[J]. Acta Aeronautica et Astronautica Sinica,2012,33(1):54-61.
    [6] JIANG H,WANG H T,LIU G,et al. Light-weight, flexible, low-voltage electro-thermal film using graphite nanoplatelets for wearable/smart electronics and deicing devices[J]. Journal of Alloys and Compounds,2017,699:1049-1056. doi: 10.1016/j.jallcom.2016.12.435
    [7] POURBAGIAN M,HABASHI W G. Surrogate-based optimization of electrothermal wing anti-icing systems[J]. Journal of Aircraft,2013,50(5):1555-1563. doi: 10.2514/1.C032072
    [8] MOHSENI M,AMIRFAZLI A. A novel electro-thermal anti-icing system for fiber-reinforced polymer composite airfoils[J]. Cold Regions Science and Technology,2013,87:47-58. doi: 10.1016/j.coldregions.2012.12.003
    [9] CORNELL J S,PILLARD D A,HERNANDEZ M T. Comparative measures of the toxicity of component chemicals in aircraft deicing fluid[J]. Environmental Toxicology and Chemistry,2000,19(6):1465-1472. doi: 10.1002/etc.5620190601
    [10] LOUCHEZ P, BERNARDIN S, LAFORTE J L. Physical properties of aircraft de-icing and anti-icing fluids[C]//Proc of the 36th AIAA Aerospace Sciences Meeting and Exhibit. 1998: 575. doi: 10.2514/6.1998-575
    [11] YAKHYA S, MORENCY F. Numerical study of momentum and heat transfer in propylene glycol jets used for aircraft ground deicing[C]//Proc of the 23rd AIAA Computational Fluid Dynamics Conference. 2017: 4504. doi: 10.2514/6.2017-4504
    [12] 李斌. 飞机除冰/防冰液及除冰技术[J]. 清洗世界,2012,28(1):26-31. doi: 10.3969/j.issn.1671-8909.2012.01.006

    LI B. Brief survey of deicing/anti-icing fluid and techniques for aircraft[J]. Cleaning World,2012,28(1):26-31. doi: 10.3969/j.issn.1671-8909.2012.01.006
    [13] 李清英,白天,朱春玲. 飞机机械除冰系统的研究综述[J]. 飞机设计,2015,35(4):73-77. doi: 10.19555/j.cnki.1673-4599.2015.04.015

    LI Q Y,BAI T,ZHU C L. Research summary of mechnical de-icing systems of aircrafts[J]. Aircraft Design,2015,35(4):73-77. doi: 10.19555/j.cnki.1673-4599.2015.04.015
    [14] DRURY M,SZEFI J T,PALACIOS J. Full-scale testing of a centrifugally powered pneumatic de-icing system for helicopter rotor blades[J]. Journal of Aircraft,2015,54:220-228. doi: 10.2514/1.C033965
    [15] SOMMERWERK H, HORST P, BANSMER S. Studies on electro impulse de-icing of a leading edge structure in an icing wind tunnel[C]//Proc of the 8th AIAA Atmospheric and Space Environments Conference. 2016: 3441. doi: 10.2514/6.2016-3441
    [16] YEONG Y H, LOTH E, SOKHEY J, et al. Ice adhesion strength on hydrophobic and superhydrophobic coatings[C]//Proc of the 6th AIAA Atmospheric and Space Environments Conference. 2014: 2063. doi: 10.2514/6.2014-2063
    [17] CAO L L,JONES A K,SIKKA V K,et al. Anti-icing superhydrophobic coatings[J]. Langmuir,2009,25(21):12444-12448. doi: 10.1021/la902882b
    [18] KULINICH S A,FARHADI S,NOSE K,et al. superhydrophobic surface: Are they really ice-repellent?[J]. Langmuir,2011,27(1):25-29. doi: 10.1021/la104277q
    [19] FARHADI S,FARZANEH M,KULINICH S A. Anti-icing performance of superhydrophobic surfaces[J]. Applied Surface Science,2011,257(14):6264-6269. doi: 10.1016/j.apsusc.2011.02.057
    [20] DE PAUW D,DOLATABADI A. Effect of superhydrophobic coating on the anti-icing and deicing of an airfoil[J]. Journal of Aircraft,2016,54(2):490-499. doi: 10.2514/1.C033828
    [21] 彭兰清,卫建勋,陈诺,等. 基于超疏水表层的石墨烯电热除冰实验研究[J]. 科学技术与工程,2021,21(15):6513-6518. doi: 10.3969/j.issn.1671-1815.2021.15.057

    PENG L Q,WEI J X,CHEN N,et al. Experimental study on graphene electrothermal deicing based on superhydrophobic surface[J]. Science Technology and Engineering,2021,21(15):6513-6518. doi: 10.3969/j.issn.1671-1815.2021.15.057
    [22] KIMURA S, YAMAGISHI Y, SAKABE A, et al. A new surface coating for prevention of icing on airfoils[R]. SAE Tech-nical Paper, 2007. doi. org/10.4271/2007-01-3315
    [23] ZHAO Z H,CHEN H W,LIU X L,et al. Novel sandwich structural electric heating coating for anti-icing/de-icing on complex surfaces[J]. Surface and Coatings Technology,2020,404:126489. doi: 10.1016/j.surfcoat.2020.126489
    [24] 朱宝. 低能耗超疏水电热蒙皮设计及防冰性能研究[D]. 西安: 西北工业大学, 2018. DOI: 10.27406/d.cnki.gxbgu.2018.000407

    ZHU B. Low power superhydrophobic electrothermal skin and its anti-icing performance[D]. Xi'an: Northwestern Polytechnical University, 2018.
    [25] KOLBAKIR C, HU H Y, LIU Y, et al. A hybrid anti-/ de-icing strategy by combining NS-DBD plasma actuator and superhydrophobic coating for aircraft icing mitigation[C]//Proc of the AIAA Scitech 2019 Forum. 2019: 0050. doi: 10.2514/6.2019-0050
    [26] ANTONINI C,INNOCENTI M,HORN T,et al. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems[J]. Cold Regions Science and Technology,2011,67(1-2):58-67. doi: 10.1016/j.coldregions.2011.02.006
    [27] HU H Y, AL-MASRI F, HU H. An experimental study on ice accretion and anti-/ de-icing of a pitot tube[C]//Proc of the AIAA SCITECH 2022 Forum. 2022: 1913. doi: 10.2514/6.2022-1913
    [28] XUE S J,LIU Y H,WANG Y,et al. Variation in anti-icing power of superhydrophobic electrothermal film under different temperatures and wind speeds[J]. International Journal of Aerospace Engineering,2022,2022:3465428. doi: 10.1155/2022/3465428
    [29] 朱春玲, 朱程香. 飞机结冰及其防护[M]. 北京: 科学出版社, 2016.

    ZHU C L, ZHU C X. Aircraft icing and its protection[M]. Beijing: Science Press, 2016.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  133
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-04
  • 修回日期:  2022-10-07
  • 录用日期:  2022-10-13
  • 网络出版日期:  2022-11-08

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日