留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液滴撞击柔性疏水表面完全反弹的实验研究

杨磊 刘细妙 李钟洪

杨磊, 刘细妙, 李钟洪. 液滴撞击柔性疏水表面完全反弹的实验研究[J]. 实验流体力学, 2023, 37(3): 124-131 doi: 10.11729/syltlx20220072
引用本文: 杨磊, 刘细妙, 李钟洪. 液滴撞击柔性疏水表面完全反弹的实验研究[J]. 实验流体力学, 2023, 37(3): 124-131 doi: 10.11729/syltlx20220072
YANG L, LIU X M, LI Z H. On complete rebound of liquid droplets impacting on soft hydrophobic surfaces[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 124-131 doi: 10.11729/syltlx20220072
Citation: YANG L, LIU X M, LI Z H. On complete rebound of liquid droplets impacting on soft hydrophobic surfaces[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 124-131 doi: 10.11729/syltlx20220072

液滴撞击柔性疏水表面完全反弹的实验研究

doi: 10.11729/syltlx20220072
基金项目: 国家重点研发计划项目(2022YFC3800900)
详细信息
    作者简介:

    杨磊:(1978—),男,安徽合肥人,副教授。研究方向:瞬态动力学,流固耦合。通信地址:广东省深圳市深圳大学土木与交通工程学院A501(518060)。E-mail:yanglei@szu.edu.cn

    通讯作者:

    E-mail:yanglei@szu.edu.cn

  • 中图分类号: O353.4

On complete rebound of liquid droplets impacting on soft hydrophobic surfaces

  • 摘要: 采用高速摄影与图像识别技术,研究了不同黏性液滴撞击不同弹性模量的柔性疏水材料(PDMS)表面后的完全反弹过程,获得了液滴黏性和柔性疏水材料弹性模量对液滴发生完全反弹的韦伯数区间和反弹恢复系数的影响规律。结果表明:由于液滴黏性对液滴铺展过程的速度影响及其所导致的黏性能量耗散差异,当液滴黏性增大时,液滴撞击PDMS表面后发生完全反弹的最大/最小韦伯数均增大、反弹恢复系数减小;随着PDMS弹性模量的降低,液滴撞击PDMS表面后发生完全反弹的最大韦伯数增大、最小韦伯数减小,PDMS弹性模量对反弹恢复系数无明显影响。
  • 图  1  储能模量和耗能模量实验曲线

    Figure  1.  Curves for frequency dependence of storage modulus and loss modulus

    图  2  实验装置示意图

    Figure  2.  Sketch of the experimental setup

    图  3  液滴撞击PDMS表面的完全反弹行为

    Figure  3.  Droplets rebound completely on a PDMS surface

    图  4  3种液滴撞击4种PDMS表面的完全反弹韦伯数区间

    Figure  4.  Weber number range of three droplets rebound on four PDMS surfaces

    图  5  最大反弹韦伯数下液滴撞击PDMS表面

    Figure  5.  Droplets impact on PDMS surfaces under maximum rebound Weber number

    图  6  3种液滴撞击不同PDMS表面发生完全反弹的恢复系数与韦伯数关系

    Figure  6.  Weber number and recovery coefficient of three droplets rebound completely on different PDMS

    图  7  3种液滴撞击40:1 PDMS表面

    Figure  7.  Three different droplets impact on 40:1 PDMS

    图  8  液滴撞击4种PDMS表面发生完全反弹的恢复系数与韦伯数关系

    Figure  8.  Weber number and recovery coefficient of different droplets rebound completely on four PDMS

    图  9  DI Water撞击4种PDMS表面

    Figure  9.  DI Water impact on four kinds of PDMS

    表  1  PDMS样品力学参数(ω = 1 rad/s)

    Table  1.   Elastic modulus of PDMS(ω = 1 rad/s)

    No.Ratio$ G' $/kPa$ G'' $/kPa
    110∶1320.0014.90
    220∶1120.0011.70
    330∶134.202.82
    440∶124.001.29
    下载: 导出CSV

    表  2  实验液滴的基本参数

    Table  2.   Parameters of liquid droplets

    No.Liquid
    droplets
    Glycerol
    /(wt%)
    $ \gamma $
    /(mN·m−1)
    $ \rho $
    /(kg·m−3)
    $ \mu $
    /(mPa·s)
    1DI Water072.19981.01
    2Mix–13071.710562.50
    3Mix–26068.8115010.8
    下载: 导出CSV
  • [1] PARK B K, KIM D, JEONG S, et al. Direct writing of copper conductive patterns by ink-jet printing[J]. Thin Solid Films, 2007, 515(19): 7706–7711. doi: 10.1016/j.tsf.2006.11.142
    [2] JIA W, QIU H H. Experimental investigation of droplet dynamics and heat transfer in spray cooling[J]. Experimental Thermal and Fluid Science, 2003, 27(7): 829–838. doi: 10.1016/S0894-1777(03)00015-3
    [3] KREDER M J, ALVARENGA J, KIM P, et al. Design of anti-icing surfaces: smooth, textured or slippery?[J]. Nature Reviews Materials, 2016, 1: 15003. doi: 10.1038/natrevmats.2015.3
    [4] GIBBS J L, PETERS T M, HECK L P. Comparison of droplet size, coverage, and drift potential from UAV application methods and ground application methods on row crops[J]. Transactions of the ASABE, 2021, 64(3): 819–828. doi: 10.13031/trans.14121
    [5] REZAEI M, NETZ R R. Airborne virus transmission via respiratory droplets: effects of droplet evaporation and sedimentation[J]. Current Opinion in Colloid & Interface Science, 2021, 55: 101471. doi: 10.1016/j.cocis.2021.101471
    [6] COMPTON B G, LEWIS J A. 3D-printing of lightweight cellular composites[J]. Advanced Materials, 2014, 26(34): 5930–5935. doi: 10.1002/adma.201401804
    [7] RIOBOO R, MARENGO M, TROPEA C. Outcomes from a drop impact on solid surfaces[J]. Atomization and Sprays, 2001, 11(2): 155–166. doi: 10.1615/atomizspr.v11.i2.40
    [8] ANTONINI C, VILLA F, BERNAGOZZI I, et al. Drop rebound after impact: the role of the receding contact angle[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2013, 29(52): 16045–16050. doi: 10.1021/la4012372
    [9] BARTOLO D, BOUAMRIRENE F, VERNEUIL E, et al. Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces[J]. Europhysics Letters (EPL), 2006, 74(2): 299–305. doi: 10.1209/epl/i2005-10522-3
    [10] OKUMURA K, CHEVY F, RICHARD D, et al. Water spring: a model for bouncing drops[J]. Europhysics Letters, 2003, 62(2): 237–243. doi: 10.1209/epl/i2003-00340-1
    [11] RICHARD D, QUÉRÉ D. Bouncing water drops[J]. Europhysics Letters, 2000, 50(6): 769–775. doi: 10.1209/epl/i2000-00547-6
    [12] JUNG Y C, BHUSHAN B. Dynamic effects of bouncing water droplets on superhydrophobic surfaces[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2008, 24(12): 6262–6269. doi: 10.1021/la8003504
    [13] REYSSAT M, PÉPIN A, MARTY F, et al. Bouncing transitions on microtextured materials[J]. Europhysics Letters, 2006, 74(2): 306–312. doi: 10.1209/epl/i2005-10523-2
    [14] RIOBOO R, VOUÉ M, VAILLANT A, et al. Drop impact on porous superhydrophobic polymer surfaces[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2008, 24(24): 14074–14077. doi: 10.1021/la802897g
    [15] CHEN L Q, BONACCURSO E, DENG P G, et al. Droplet impact on soft viscoelastic surfaces[J]. Physical Review E, 2016, 94(6): 063117. doi: 10.1103/PhysRevE.94.063117
    [16] CHEN L Q, LI Z G. Bouncing droplets on nonsuper-hydrophobic surfaces[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2010, 82(1 Pt 2): 016308. doi: 10.1103/PhysRevE.82.016308
    [17] CHEN L Q, WU J, LI Z G, et al. Evolution of entrapped air under bouncing droplets on viscoelastic surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384(1-3): 726–732. doi: 10.1016/j.colsurfa.2011.05.046
    [18] LEE J B, DOS SANTOS S, ANTONINI C. Water touch-and-bounce from a soft viscoelastic substrate: wetting, dewetting, and rebound on bitumen[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2016, 32(32): 8245–8254. doi: 10.1021/acs.langmuir.6b01796
    [19] 杨磊, 杨向龙, 王甫军. 液滴撞击柔性材料表面铺展特性的实验研究[J]. 实验流体力学, 2019, 33(3): 83–89. doi: 10.11729/syltlx20180086

    YANG L, YANG X L, WANG F J. On the maximum spreading of liquid droplets impacting on soft surfaces[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 83–89. doi: 10.11729/syltlx20180086
    [20] KOLINSKI J M, MAHADEVAN L, RUBINSTEIN S M. Drops can bounce from perfectly hydrophilic surfaces[J]. Europhysics Letters, 2014, 108(2): 24001. doi: 10.1209/0295-5075/108/24001
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  115
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-25
  • 修回日期:  2023-01-18
  • 录用日期:  2023-02-01
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日