留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多模态融合的结冰风洞云雾参数辨识方法

谢腾 熊浩 彭博 易贤

谢腾,熊浩,彭博,等. 基于多模态融合的结冰风洞云雾参数辨识方法[J]. 实验流体力学,2022,36(X):1-8 doi: 10.11729/syltlx20220077
引用本文: 谢腾,熊浩,彭博,等. 基于多模态融合的结冰风洞云雾参数辨识方法[J]. 实验流体力学,2022,36(X):1-8 doi: 10.11729/syltlx20220077
XIE T,XIONG H,PENG B,et al. Ice cloud parameter identification method in icing wind tunnel based on multimodal fusion[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-8. doi: 10.11729/syltlx20220077
Citation: XIE T,XIONG H,PENG B,et al. Ice cloud parameter identification method in icing wind tunnel based on multimodal fusion[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-8. doi: 10.11729/syltlx20220077

基于多模态融合的结冰风洞云雾参数辨识方法

doi: 10.11729/syltlx20220077
基金项目: 国家自然科学基金重点基金(12132019);国家重大科技专项(J2019-III-0010-0054);国家自然科学基金面上项目(12172372)
详细信息
    作者简介:

    谢腾:(1999—),男,四川德阳人,硕士研究生。研究方向:深度学习技术,结冰风洞云雾参数辨识技术。通信地址:四川省绵阳市涪城区二环路南段6号(621000)。E-mail:oxteng@qq.com

    通讯作者:

    E-mail:yixian_2000@163.com

  • 中图分类号: V211.753

Ice cloud parameter identification method in icing wind tunnel based on multimodal fusion

  • 摘要: 结冰风洞云雾场校测通常存在仪器依赖度高的问题。针对该问题,提出了一种基于多模态融合的结冰风洞云雾参数辨识方法,该方法以试验模型结冰图像及迎角、来流速度、来流温度、结冰时长等参数作为输入,提取并融合两者特征参数,以液态水含量和水滴平均体积直径作为输出训练神经网络模型,进而实现对结冰风洞云雾参数的快速辨识。为验证该方法的有效性和可行性,以NACA0012标准翼型结冰为研究对象,开发了结冰风洞云雾参数辨识程序,分析了融合比例的影响,获得了适用于结冰风洞云雾参数辨识的最佳网络模型。在此基础上,开展了仿真和试验评估,结果表明:所提出的方法对液态水含量和水滴平均体积直径的辨识满度误差均小于12%,具有较高的辨识精度与良好的泛化性能,可为结冰风洞云雾参数辨识提供补充。
  • 图  1  基于多模态融合的结冰风洞云雾参数辨识方法流程图

    Figure  1.  Flow block diagram of cloud parameter identification method based on multimodal fusion

    图  2  数值计算与试验方法对比[14]

    Figure  2.  Comparison of numerical and experimental methods[14]

    图  3  随机选取的9张冰形灰度图片

    Figure  3.  Nine randomly selected images of ice-shaped grayscale

    图  4  多模态融合辨识方法网络结构

    Figure  4.  Network architecture of multimodal fusion methods

    图  5  不同融合比例下的辨识结果对比

    Figure  5.  Comparison of results for different fusion weights

    图  6  NACA0012试验模型

    Figure  6.  NACA0012 test model

    图  7  NACA0012翼型结冰情况

    Figure  7.  NACA0012 Airfoil icing

    图  8  3种工况下的NACA0012翼型结冰冰形图像

    Figure  8.  The NACA0012 airfoil is frozen in 3 operating conditions

    表  1  结冰工况参数设置

    Table  1.   Icing parameter setting

    参数取值
    迎角α/(°)0,3
    来流速度v/(m·s−180,100
    来流温度T/(℃)−30,−20,−10
    液态水含量LWC/(g·m−30.1~1.0
    水滴平均体积直径MVD/μm20~100
    结冰时长t/s1350
    下载: 导出CSV

    表  2  测试集1的结冰工况

    Table  2.   Test set 1 icing conditions

    算例迎角
    /(°)
    来流速度
    /(m·s−1
    来流
    温度/(℃)
    结冰
    时长/s
    水滴平均体积
    直径/μm
    液态水含量
    /(g·m−3
    a080−201350200.25
    b380−301350260.61
    c0100−201350260.76
    d380−201350380.91
    e080−101350470.76
    f080−201350560.94
    g3100−101350650.25
    h080−301350740.40
    i380−301350890.22
    下载: 导出CSV

    表  3  测试集2的结冰工况

    Table  3.   Test set 2 icing conditions

    算例迎角
    /(°)
    来流速度
    /(m·s−1
    来流
    温度/(℃)
    结冰
    时长/s
    水滴平均
    体积直径/μm
    液态水含量
    /(g·m−3
    a067.1−231500200.50
    b367.1−231500200.50
    c367.1−71500200.50
    下载: 导出CSV

    表  4  测试集1的MVD与LWC辨识结果及满度误差

    Table  4.   Test set 1 MVD and LWC identification results and errors

    算例MVDT/μmMVDP/μmMVDeLWCT/(g·m−3LWCP/(g·m−3LWCe
    a2020.4100.51%0.250.2510.11%
    b2627.8912.36%0.610.6120.22%
    c2627.6992.12%0.760.7560.44%
    d3838.6340.79%0.910.8981.33%
    e4746.5790.53%0.760.7451.67%
    f5656.6770.85%0.940.9212.11%
    g6565.3960.50%0.250.2510.11%
    h7474.5820.73%0.400.3920.89%
    i8989.6230.78%0.220.2240.44%
    下载: 导出CSV

    表  5  测试集2的MVD与LWC辨识结果及满度误差

    Table  5.   Test set 2 MVD and LWC identification results and errors

    算例MVDT/μmMVDP/μmMVDeLWCT/(g·m−3LWCP/(g·m−3LWCe
    a2022.7133.39%0.500.5283.11%
    b2023.5044.38%0.500.5626.89%
    c2023.2694.08%0.500.5414.56%
    下载: 导出CSV

    表  6  测试集3的试验工况

    Table  6.   Test set 3 icing conditions

    工况迎角/(°)来流速度/(m·s−1来流温度/(℃)结冰时长/s水滴平均体积直径/μm液态水含量/(g·m−3
    a067.1−231500200.50
    b367.1−231500200.50
    c367.1−71500200.50
    下载: 导出CSV

    表  7  测试集3的MVD与LWC辨识结果及满度误差

    Table  7.   Test set 3 MVD and LWC identification results and errors

    算例MVDT/μmMVDP/μmMVDeLWCT/(g·m−3LWCP/(g·m−3LWCe
    a2024.1425.17%0.500.5525.78%
    b2025.1296.41%0.500.60111.20%
    c2023.8644.83%0.500.5788.67%
    下载: 导出CSV
  • [1] 郭向东,张平涛,赵照,等. 大型结冰风洞云雾场适航应用符合性验证[J]. 航空学报,2020,41(10):123879. doi: 10.7527/S1000-6893.2020.23879

    GUO X D,ZHANG P T,ZHAO Z,et al. Airworthiness application compliance verification of cloud flowfield in large icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica,2020,41(10):123879. doi: 10.7527/S1000-6893.2020.23879
    [2] 战培国. 结冰风洞校准标准研究[J]. 标准科学,2020(5):87-90. doi: 10.3969/j.issn.1674-5698.2020.05.014

    ZHAN P G. Research on standards of icing wind tunnel calibration[J]. Standard Science,2020(5):87-90. doi: 10.3969/j.issn.1674-5698.2020.05.014
    [3] 周靓,战培国,王梓旭. 结冰风洞云雾场校准标准初探[J]. 标准科学,2020(9):94-98. doi: 10.3969/j.issn.1674-5698.2020.09.019

    ZHOU L,ZHAN P G,WANG Z X. Preliminary study on calibration standard of cloud field in icing wind tunnel[J]. Standard Science,2020(9):94-98. doi: 10.3969/j.issn.1674-5698.2020.09.019
    [4] 易贤,桂业伟,肖春华,等. 结冰风洞液态水含量测量方法研究[J]. 科技导报,2009,27(21):86-90. doi: 10.3321/j.issn:1000-7857.2009.21.018

    YI X,GUI Y W,XIAO C H,et al. A method of liquid water content measurement in icing wind tunnel[J]. Science & Technology Review,2009,27(21):86-90. doi: 10.3321/j.issn:1000-7857.2009.21.018
    [5] 赖庆仁,郭龙,李明,等. 结冰风洞液态水含量测量装置设计与实现[J]. 空气动力学学报,2016,34(6):750-755. doi: 10.7638/kqdlxxb-2015.0137

    LAI Q R,GUO L,LI M,et al. Design and implementation of the device for liquid water content measurement in icing wind tunnel[J]. Acta Aerodynamica Sinica,2016,34(6):750-755. doi: 10.7638/kqdlxxb-2015.0137
    [6] 战培国. 结冰云小水滴粒径测量设备综述[J]. 测控技术,2020,39(6):1-7. doi: 10.19708/j.ckjs.2020.04.217

    ZHAN P G. Review of measuring instruments for water droplet sizing in icing clouds[J]. Measurement & Control Technology,2020,39(6):1-7. doi: 10.19708/j.ckjs.2020.04.217
    [7] HOVENAC E, IDE R. Performance of the forward scattering spectrometer probe in NASA's Icing Research Tunnel[C]// Proc of the 27th Aerospace Sciences Meeting. 1989: 769. doi: 10.2514/6.1989-769
    [8] VECCHIONE L, DE MATTEIS P. An overview of the CIRA icing wind tunnel[C]//Proc of the 41st Aerospace Sciences Meeting and Exhibit. 2003: 900. doi: 10.2514/6.2003-900
    [9] 王梓旭,沈浩,郭龙,等. 3 m×2 m结冰风洞云雾参数校测方法[J]. 实验流体力学,2018,32(2):61-67. doi: 10.11729/syltlx20170163

    WANG Z X,SHEN H,GUO L,et al. Cloud calibration method of 3 m×2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2018,32(2):61-67. doi: 10.11729/syltlx20170163
    [10] AC-9C Aircraft Icing Technology Committee. Calibration and acceptance of icing wind tunnels[R/OL]. SAE International[2022-06-24]. https://www.sae.org/content/arp5905. doi: 10.4271/ARP5905
    [11] 何俊,张彩庆,李小珍,等. 面向深度学习的多模态融合技术研究综述[J]. 计算机工程,2020,46(5):1-11. doi: 10.19678/j.issn.1000-3428.0057370

    HE J,ZHANG C Q,LI X Z,et al. Survey of research on multimodal fusion technology for deep learning[J]. Computer Engineering,2020,46(5):1-11. doi: 10.19678/j.issn.1000-3428.0057370
    [12] 易贤,王强,柴聪聪,等. 基于深度神经网络的飞机结冰冰形预测模型[J]. 南京航空航天大学学报(英文版),2021,38(4):535-544. doi: 10.16356/j.1005-1120.2021.04.001

    YI X,WANG Q,CHAI C C,et al. Prediction model of aircraft icing based on deep neural network[J]. Transactions of Nanjing University of Aeronautics and Astronautics,2021,38(4):535-544. doi: 10.16356/j.1005-1120.2021.04.001
    [13] 易贤,朱国林,王开春,等. 翼型积冰的数值模拟[J]. 空气动力学学报,2002,20(4):428-433. doi: 10.3969/j.issn.0258-1825.2002.04.009

    YI X,ZHU G L,WANG K C,et al. Numerically simulating of ice accretion on airfoil[J]. Acta Aerodynamica Sinica,2002,20(4):428-433. doi: 10.3969/j.issn.0258-1825.2002.04.009
    [14] 柴聪聪,王强,易贤,等. 基于卷积神经网络的结冰翼型气动参数预测[J]. 飞行力学,2021,39(5):13-18. doi: 10.13645/j.cnki.f.d.20210811.001

    CHAI C C,WANG Q,YI X,et al. Aerodynamic parameters prediction of airfoil ice accretion based on convolutional neural network[J]. Flight Dynamics,2021,39(5):13-18. doi: 10.13645/j.cnki.f.d.20210811.001
    [15] 柴聪聪,易贤,郭磊,等. 基于BP神经网络的冰形特征参数预测[J]. 实验流体力学,2021,35(3):16-21. doi: 10.11729/syltlx20200016

    CHAI C C,YI X,GUO L,et al. Prediction of ice shape characteristic parameters based on BP nerual network[J]. Journal of Experiments in Fluid Mechanics,2021,35(3):16-21. doi: 10.11729/syltlx20200016
    [16] HUBER P J. Robust estimation of a location parameter[J]. The Annals of Mathematical Statistics,1964,35(1):73-101. doi: 10.1214/aoms/1177703732
    [17] JAMES G, WITTEN D, HASTIE T, et al. An introduction to statistical learning: with Applications in R[M]. New York: Springer, 2013.
    [18] 易贤,郭龙,符澄,等. 结冰风洞试验段水滴分布特性分析[J]. 实验流体力学,2016,30(3):2-7,1. doi: 10.11729/syltlx20160034

    YI X,GUO L,FU C,et al. Analysis of water droplets distribution in the test section of an icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2016,30(3):2-7,1. doi: 10.11729/syltlx20160034
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  127
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-16
  • 修回日期:  2022-09-20
  • 录用日期:  2022-09-27
  • 网络出版日期:  2022-11-03

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日