留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

来流总温对高超声速边界层转捩影响试验研究

李强 万兵兵 庄宇 赵金山

李强, 万兵兵, 庄宇, 等. 来流总温对高超声速边界层转捩影响试验研究[J]. 实验流体力学, doi: 10.11729/syltlx20220081
引用本文: 李强, 万兵兵, 庄宇, 等. 来流总温对高超声速边界层转捩影响试验研究[J]. 实验流体力学, doi: 10.11729/syltlx20220081
LI Q, WAN B B, ZHUANG Y, et al. Experimental study on influence of incoming total temperature on hypersonic boundary layer transition[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220081
Citation: LI Q, WAN B B, ZHUANG Y, et al. Experimental study on influence of incoming total temperature on hypersonic boundary layer transition[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220081

来流总温对高超声速边界层转捩影响试验研究

doi: 10.11729/syltlx20220081
基金项目: 基础加强计划技术领域基金项目(2022-JCJQ-JJ-1125)
详细信息
    作者简介:

    李强:(1982—),男,湖南龙山人,硕士,高级工程师。研究方向:高超声速气动热环境试验研究。通信地址:四川省绵阳市二环路南段6号(621000)。E-mail:409195707@qq.com

    通讯作者:

    E-mail:zhaojs_china@163.com

  • 中图分类号: V211.74

Experimental study on influence of incoming total temperature on hypersonic boundary layer transition

  • 摘要: 壁温比/温度是高超声速边界层转捩研究中需要引起重视的重要参数。在中国空气动力研究与发展中心Φ2 m激波风洞(FD−14A)的头部钝度0.05 mm、半锥角7°尖锥模型上开展试验,流场马赫数分别为9.86、9.97,单位雷诺数分别为8.9 × 106/m、8.4 × 106/m,总温分别为1332.2 K、956.6 K。在马赫数、雷诺数、噪声水平、壁温大致相同条件下,研究风洞总温对高超声速边界层转捩的影响,采用点热流传感器测量转捩位置和高频脉动压力传感器测量边界层脉动特性,分别采用γReθMT修正模型的转捩预测结果和线性稳定性理论结果与试验结果进行对比。结果表明采用γReθMT修正转捩模型计算的尖锥模型热流分布结果与风洞试验结果吻合良好,转捩位置基本一致,表明该模型具有较高的可信度;PCB传感器测量的压力脉动和线性稳定性理论分析结果相互印证,展示了风洞条件下高低总温两个流场第2模态波频谱特性。
  • 图  1  风洞模型

    Figure  1.  The wind tunnel model

    图  2  热流分布及对比情况

    Figure  2.  Heat flux distribution and comparison

    图  3  低总温流场脉动压力功率谱

    Figure  3.  PSD of pressure fluctuations of flow-field at low total temperature

    图  4  高总温流场脉动压力功率谱

    Figure  4.  PSD of pressure fluctuations of flow-field at high total temperature

    图  5  高低总温流场中性曲线对比

    Figure  5.  Comparison of neutral curves of flow fields at high and low total temperatures

    图  6  高总温流场N

    Figure  6.  High total temperature flow field N factor

    图  7  低总温流场N

    Figure  7.  Low total temperature flow field N factor

    图  8  高低总温流场的2#PCB压力脉动功率谱与线性稳定性分析N值对比

    Figure  8.  comparison of PSD of 2# PCB and N factor from LST computation for high and low total temperature flow fields

    图  9  高低总温流场3#PCB压力脉动功率谱与线性稳定性分析N值对比

    Figure  9.  comparison of PSD of 3# PCB and N factor from LST computation for high and low total temperature flow fields

    图  10  高低总温流场4#PCB压力脉动功率谱与线性稳定性分析N值对比

    Figure  10.  comparison of PSD of 4# PCB and N factor from LST computation for high and low total temperature flow fields

    图  11  高低总温流场5#PCB压力脉动功率谱与线性稳定性分析N值对比

    Figure  11.  comparison of PSD of 5# PCB and N factor from LST computation for high and low total temperature flow fields

    图  12  高低总温流场6#PCB压力脉动功率谱与线性稳定性分析N值对比

    Figure  12.  comparison of PSD of 6# PCB and N factor from LST computation for high and low total temperature flow fields

    表  1  风洞来流参数

    Table  1.   Wind tunnel incoming flow parameters

    高总温低总温
    总压P0(MPa)22.5412.05
    总温T0(K)1332.2956.6
    马赫数Ma9.869.97
    单位雷诺数Re/L(1/m)8.90 × 1068.40 × 106
    密度ρ(kg/m30.0260.0199
    静温T(K)69.447.3
    静压P(Pa)529.8279
    速度u(m/s)16741397
    下载: 导出CSV

    表  2  PCB传感器坐标及当地边界层流态

    Table  2.   PCB sensor coordinates and local boundary layer flow regimes

    PCB1#2#3#4#5#6#7#8#
    X(mm)125205285365445525605685
    流态LLRRRTTT
    下载: 导出CSV
  • [1] SCHNEIDER S P. Flight data for boundary-layer transition at hypersonic and supersonic speeds[J]. Journal of Spacecraft and Rockets, 1999, 36(1): 8–20. doi: 10.2514/2.3428
    [2] BERRY S A, HORVATH T J, HOLLIS B R, et al. X-33 hypersonic boundary layer transition[R]. AIAA 99-3560, 1999. doi: 10.2514/6.1999-3560
    [3] MALIK M, ZANG T, BUSHNELL D. Boundary layer transition in hypersonic flows[R]. AIAA 90-5232, 1990. DOI: 10.2514/6.1990-5232
    [4] LIN T C, GRABOWSKY W R, YELMGREN K E. The search for optimum configurations for re-entry vehicles[J]. Journal of Spacecraft and Rockets, 1984, 21(2): 142–149. doi: 10.2514/3.8625
    [5] WHITEHEAD A. NASP aerodynamics[R]. AIAA 89-5013, 1989.
    [6] ERICSSON L. Effect of boundary-layer transition on vehicle dynamics[C]//Proc of the 7th Aerospace Sciences Meeting. 1969. doi: 10.2514/6.1969-106
    [7] MARTELLUCCI A, NEFF R. The influence of asymmetric transition on re-entry vehicle motion[C]//Proc of the Guidance, Control and Flight Mechanics Conference. 1970. doi: 10.2514/6.1970-987
    [8] HOLDEN M. Studies of the effects of transitional and turbulent boundary layers on the aerodynamic performance of hypersonic re-entry vehicles in high Reynolds number flows[R]. Calspan Report AB-5834-A-2, 1978.
    [9] 罗纪生. 高超声速边界层的转捩及预测[J]. 航空学报, 2015, 36(1): 357–372.

    LUO J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 357–372.
    [10] ZHAO L, YU G T, LUO J S. Extension of eN method to general three-dimensional boundary layers[J]. Applied Mathematics and Mechanics, 2017, 38(7): 1007–1018. doi: 10.1007/s10483-017-2215-6
    [11] 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311–337. doi: 10.7638/kqdlxxb-2017.0030

    CHEN J Q, TU G H, ZHANG Y F, et al. Hypersnonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311–337. doi: 10.7638/kqdlxxb-2017.0030
    [12] 涂国华, 万兵兵, 陈坚强, 等. MF-1钝锥边界层稳定性及转捩天地相关性研究[J]. 中国科学 (物理学 力学 天文学), 2019, 49(12): 114–124.

    TU G H, WAN B B, CHEN J Q, et al. Investigation on correlation between wind tunnel and flight for boundary layer stability and transition of MF-1 blunt cone[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(12): 114–124.
    [13] 陈坚强, 涂国华, 万兵兵, 等. HyTRV流场特征与边界层稳定性特征分析[J]. 航空学报, 2021, 42(6): 124317.

    CHEN J Q, TU G H, WAN B B, et al. Characteristics of flow field and boundary-layer stability of HyTRV[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124317.
    [14] 国义军, 周宇, 肖涵山, 等. 飞行试验热流辨识和边界层转捩滞后现象[J]. 航空学报, 2017, 38(10): 121255. doi: 10.7527/S1000-6893.2017.121255

    GUO Y J, ZHOU Y, XIAO H S, et al. Delay phenomenon of boundary layer transition according to heating flux identified from flight test[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10): 121255. doi: 10.7527/S1000-6893.2017.121255
    [15] CHEN J Q, YI S H, LI X L, et al. Theoretical, numerical and experimental study of hypersonic boundary layer transition: blunt circular cone[J]. Applied Thermal Engineering, 2021, 194: 116931. doi: 10.1016/j.applthermaleng.2021.116931
    [16] TUFTS M W, BORG M P, GOSSE R C, et al. Collaboration between flight test, ground test, and computation on HIFiRE-5[C]//Proc of the 2018 Applied Aerodynamics Conference. 2018. doi: 10.2514/6.2018-3807
    [17] KIMMEL R L, ADAMCZAK D W, BORG M P, et al. First and fifth hypersonic international flight research experimentation’s flight and ground tests[J]. Journal of Spacecraft and Rockets, 2019, 56(2): 421–431. doi: 10.2514/1.a34287
    [18] GOSSE R, KIMMEL R. CFD study of three-dimensional hypersonic laminar boundary layer transition on a Mach 8 elliptic cone[C]//Proc of the 39th AIAA Fluid Dynamics Conferenc. 2009. doi: 10.2514/6.2009-4053
    [19] MACK L M. Linear stability theory and the problem of supersonic boundary- layer transition[J]. AIAA Journal, 1975, 13(3): 278–289. doi: 10.2514/3.49693
    [20] MACK L. M. Boundary-layer linear stability theory[R]. AGARD Report No. 709, 1984.
    [21] MALIK M R. Prediction and control of transition in supersonic and hypersonic boundary layers[J]. AIAA Journal, 1989, 27(11): 1487–1493. doi: 10.2514/3.10292
    [22] MADDALON D V. Effect of varying wall temperature and total temperature on transition Reynolds number at Mach 6.8[J]. AIAA Journal, 1969, 7(12): 2355–2357. doi: 10.2514/3.5549
    [23] STETSON K F, KIMMEL R L. Surface temperature effects on boundary-layer transition[J]. AIAA Journal, 1992, 30(11): 2782–2783. doi: 10.2514/3.11300
    [24] LEITH POTTER J. Review of the influence of cooled walls on boundary-layer transition[J]. AIAA Journal, 1980, 18(8): 1010–1012. doi: 10.2514/3.7703
    [25] ZHAO J S, LIU S, ZHAO L, et al. Numerical study of total temperature effect on hypersonic boundary layer transition[J]. Physics of Fluids, 2019, 31(11): 1–25. doi: 10.1063/1.5125116
    [26] 李强, 江涛, 陈苏宇, 等. 激波风洞边界层转捩测量技术及应用[J]. 航空学报, 2019, 40(8): 122740. doi: 10.7527/S1000-6893.2019.22740

    LI Q, JIANG T, CHEN S Y, et al. Measurement technique and application of boundary layer transition in shock tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122740. doi: 10.7527/S1000-6893.2019.22740
    [27] 李强, 万兵兵, 杨凯, 等. 高超声速尖锥边界层压力脉动和热流脉动特性试验[J]. 航空学报, 2022, 43(2): 12956. doi: 10.7527/S1000-6893.2020.24956

    LI Q, WAN B B, YANG K, et al. Experimental research on characteristics of pressure and heat flux fluctuation in hypersonic cone boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 12956. doi: 10.7527/S1000-6893.2020.24956
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  111
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-22
  • 修回日期:  2023-02-02
  • 录用日期:  2023-02-07
  • 网络出版日期:  2023-06-07

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日