留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

跨/超临界条件流体流动与喷射研究进展

姜冠宇 闻浩诚 代雯 师迎晨 王兵

姜冠宇, 闻浩诚, 代雯, 等. 跨/超临界条件流体流动与喷射研究进展[J]. 实验流体力学. doi: 10.11729/syltlx20220083
引用本文: 姜冠宇, 闻浩诚, 代雯, 等. 跨/超临界条件流体流动与喷射研究进展[J]. 实验流体力学. doi: 10.11729/syltlx20220083
JIANG G Y, WEN H C, DAI W, et al. A brief review on trans/supercritical internal flow and jet[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220083
Citation: JIANG G Y, WEN H C, DAI W, et al. A brief review on trans/supercritical internal flow and jet[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220083

跨/超临界条件流体流动与喷射研究进展

doi: 10.11729/syltlx20220083
基金项目: 国家科技重大专项(2017-Ⅲ-0005-0030);四川省科技计划(2021YFG0360)
详细信息
    作者简介:

    姜冠宇:(1996—),男,辽宁大连人,硕士,助理工程师。研究方向:多相流体动力学。通信地址:北京市丰台区北京宇航系统工程研究所(100076)。E-mail:jiangguanyu19@163.com

    通讯作者:

    E-mail:wbing@tsinghua.edu.cn

  • 中图分类号: V231

A brief review on trans/supercritical internal flow and jet

  • 摘要: 航空煤油作为先进航空燃气涡轮发动机的冷却介质时,在发动机特定工况下处于接近临界点的亚临界状态或超临界状态,因此,针对喷嘴流道流动及喷射掺混等流体物理规律的研究对于发动机燃烧室设计十分重要。本文围绕跨/超临界条件流体的流动特性及喷射掺混规律进行了文献综述。文献表明,现有跨/超临界条件流体内流道的流动特性研究多局限于小分子、单质流体,流体相变条件取决于入口参数和流道几何特性,流道类型多局限于简单几何流道,而相关研究则多局限于较为狭窄的参数范围。以小分子流体作为研究介质的喷射掺混特性研究表明,跨/超临界条件下的流体喷射掺混效果很大程度上受到流体热力学特性的影响,特别是在改变喷嘴几何构型时,超临界流体射流形态及喷射掺混评价模型与方法尚未获得一致的研究结论。对于跨/超临界条件下大分子碳氢燃料(航空煤油)在收缩喷嘴流道等复杂几何流道中的流动规律以及复杂喷嘴构型喷射掺混特性的研究,尚有待深入开展。一方面,需准确建立航空煤油在超临界条件下的热力学模型,另一方面,需揭示喷射流体界面变形、破碎机理及规律,以先进光学诊断手段捕获流体掺混行为,总结描述掺混特性参数及其变化规律。
  • 图  1  传统航空燃气涡轮发动机与新一代航空燃气涡轮发动机工况范围

    Figure  1.  Operating conditions of traditional aviation gas turbine engines and advanced aviation gas turbine engines

    图  2  不同压力下的液氮射流(从右下到左上,压力逐渐升高)[48]

    Figure  2.  Nitrogen jet under different pressures. The corresponding pressure increases gradually from lower right to upper left[48]

    图  3  氮气射流表面结构随时间的变化规律[49]

    Figure  3.  The variation of nitrogen jet surface structure with time[49]

    图  4  比热容脉动量的典型模态[61]

    Figure  4.  The typical modes of specific heat capacity pulse momentum[61]

    图  5  Doungthip等首次观测到超临界燃油射流[66]

    Figure  5.  The first observation of supercritical fuel jets performed by Doungtheip et al[66]

    图  6  跨临界氟己酮射流的密度与密度梯度分布(从左至右温度逐渐升高)[67]

    Figure  6.  Density and density gradient distribution of transcritical fluhexanone jet (temperature increases gradually from left to right) [67]

    图  7  椭圆喷嘴对应氟己酮射流的轴切换现象[69]

    Figure  7.  Axis switching phenomenon of fluhexanone jet via an elliptical nozzle[69]

    图  8  正庚烷在超临界或亚临界喷注温度下的瞬时流场[71]

    Figure  8.  Instantaneous flow field of n-heptane under supercritical or subcritical injection temperature conditions[71]

    图  9  氮气旋流射流密度云图与流动结构示意图[89]

    Figure  9.  The density contour and flow structure diagram of supercritical nitrogen swirl jet[89]

    图  10  Rachedi等首次观察到超临界碳氢燃料旋流射流[93]

    Figure  10.  The first observation of supercritical swirl fuel jets performed by Rachedi et al[93]

  • [1] 廉筱纯, 吴虎. 航空发动机原理[M]. 西安: 西北工业大学出版社, 2005: 50-52.

    LIAN X C, WU H. Aeroengine principle[M]. Xi'an: Northwestern Polytechnical University Press, 2005: 50-52.
    [2] 焦华宾, 莫松. 航空涡轮发动机现状及未来发展综述[J]. 航空制造技术, 2015, 58(12): 62–65. doi: 10.16080/j.issn1671-833x.2015.12.062

    JIAO H B, MO S. Present status and development trend of aircraft turbine engine[J]. Aeronautical Manufacturing Technology, 2015, 58(12): 62–65. doi: 10.16080/j.issn1671-833x.2015.12.062
    [3] 王增强. 先进航空发动机关键制造技术[J]. 航空制造技术, 2015, 58(22): 34–38. doi: 10.16080/j.issn1671-833x.2015.22.034

    WANG Z Q. Key manufacturing technology of advanced aeroengine[J]. Aeronautical Manufacturing Technology, 2015, 58(22): 34–38. doi: 10.16080/j.issn1671-833x.2015.22.034
    [4] 吴亚东, 朱广生, 蒋平, 等. 先进的热防护方法及在飞行器的应 用前景初探[J]. 宇航总体技术, 2017, 1(1): 60–65.

    WU Y D, ZHU G S, JIANG P, et al. Advanced thermal protection methods and applications in future vehicles[J]. Astronautical Systems Engineering Technology, 2017, 1(1): 60–65.
    [5] MA X, RUGGIERO P. Practical aspects of suspension plasma spray for thermal barrier coatings on potential gas turbine components[J]. Journal of Thermal Spray Techno-logy, 2018, 27(4): 591–602. doi: 10.1007/s11666-018-0700-8
    [6] JAFARI S, NIKOLAIDIS T. Thermal management systems for civil aircraft engines: review, challenges and exploring the future[J]. Applied Sciences, 2018, 8(11): 2044. doi: 10.3390/app8112044
    [7] 曾家, 黄辉, 朱平平, 等. 火箭基组合动力研究进展与关键技术[J]. 宇航总体技术, 2022, 6(3): 49–57.

    ZENG J, HUANG H, ZHU P P, et al. Research progress and key technology analysis of rocket based combined cycle engines[J]. Astronautical Systems Engineering Technology, 2022, 6(3): 49–57.
    [8] PIORO I L, DUFFEY R B, DUMOUCHEL T J. Hydraulic resistance of fluids flowing in channels at supercritical pressures (survey)[J]. Nuclear Engineering and Design, 2004, 231(2): 187–197. doi: 10.1016/j.nucengdes.2004.03.001
    [9] KIM H, BAE Y Y, KIM H Y, et al. Experimental investigation on the heat transfer characteristics in upward flow of supercritical carbon dioxide[J]. Nuclear Technology, 2008, 164(1): 119–129. doi: 10.13182/NT08-A4013
    [10] KIM D E, KIM M H. Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube[J]. International Journal of Heat and Fluid Flow, 2011, 32(1): 176–191. doi: 10.1016/j.ijheatfluidflow.2010.09.001
    [11] WANG H, BI Q C YANG Z D. Experimental and numerical investigation of heat transfer from a narrow annulus to supercritical pressure water[J]. Annals of Nuclear Energy, 2015, 80: 416–428. doi: 10.1016/j.anucene.2015.02.029
    [12] LIU X X, XU X X, LIU C, et al. Flow structure at different stages of heat transfer deterioration with upward, mixed turbulent flow of supercritical CO2 heated in vertical straight tube[J]. Applied Thermal Engineering, 2020, 181: 115987. doi: 10.1016/j.applthermaleng.2020.115987
    [13] 刘生晖, 黄彦平, 刘光旭, 等. 竖直圆管内超临界流体混合对流传热特性理论分析[J]. 原子能科学技术, 2016, 50(12): 2181–2187. doi: 10.7538/yzk.2016.50.12.2181

    LIU S H, HUANG Y P, LIU G X, et al. Theoretical analysis of mixed convective heat transfer characteristic for supercritical fluid flowing in vertical bare tube[J]. Atomic Energy Science and Technology, 2016, 50(12): 2181–2187. doi: 10.7538/yzk.2016.50.12.2181
    [14] YU S Q, LI H X, LEI X L, et al. Influence of buoyancy on heat transfer to water flowing in horizontal tubes under supercritical pressure[J]. Applied Thermal Engineering, 2013, 59(1-2): 380–388. doi: 10.1016/j.applthermaleng.2013.05.034
    [15] YANG Z, CHENG X, ZHENG X H, et al. Numerical investigation on heat transfer of the supercritical fluid upward in vertical tube with constant wall temperature[J]. International Journal of Heat and Mass Transfer, 2019, 128: 875–884. doi: 10.1016/j.ijheatmasstransfer.2018.09.049
    [16] ZHU B G, XU J J, WU X M, et al. Supercritical “boiling” number, a new parameter to distinguish two regimes of carbon dioxide heat transfer in tubes[J]. International Journal of Thermal Sciences, 2019, 136: 254–266. doi: 10.1016/j.ijthermalsci.2018.10.032
    [17] YAN C S, XU J L, ZHU B G, et al. Numerical study on convective heat transfer of supercritical CO2 in vertically upward and downward tubes[J]. Science China Technolo-gical Sciences, 2021, 64(5): 995–1006. doi: 10.1007/s11431-020-1773-9
    [18] WANG J Y, GUAN Z Q, GURGENCI H, et al. Computational investigations of heat transfer to super-critical CO2 in a large horizontal tube[J]. Energy Conversion and Management, 2018, 157: 536–548. doi: 10.1016/j.enconman.2017.12.046
    [19] CHAI L, TASSOU S A. Effect of cross-section geometry on the thermohydraulic characteristics of supercritical CO2 in minichannels[J]. Energy Procedia, 2019, 161: 446–453. doi: 10.1016/j.egypro.2019.02.077
    [20] 王彦红, 李雨健, 李洪伟, 等. 方形通道内超临界压力二氧化碳传热恶化数值研究[J]. 北京航空航天大学学报. doi: 10.13700/j.bh.1001-5965.2022.0533.

    WANG Y H, LI Y J, LI H W, et al. Numerical study on heat transfer deterioration of supercritical-pressure carbon dioxide in a square channel[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022.0533.
    [21] WANG H, WANG W S, BI Q C, et al. Experimental study of heat transfer and flow resistance of supercritical pressure water in a SCWR sub-channel[J]. The Journal of Super-critical Fluids, 2015, 100: 15–25. doi: 10.1016/j.supflu.2015.02.011
    [22] WANG H, ZANG J G, WANG J F, et al. Large eddy simulation of the heat transfer and unsteady pulsation of supercritical carbon dioxide in a square subchannel[J]. International Journal of Thermal Sciences, 2022, 172: 107377. doi: 10.1016/j.ijthermalsci.2021.107377
    [23] ZANG J G, YAN X, LI Y L, et al. The flow resistance experiments of supercritical pressure water in 2 × 2 rod bundle[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118873. doi: 10.1016/j.ijheatmasstransfer.2019.118873
    [24] CHEN Y J, LIU Z H, HE D Q. Numerical study on enhanced heat transfer and flow characteristics of super-critical methane in a square mini-channel with dimple array[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119729. doi: 10.1016/j.ijheatmasstransfer.2020.119729
    [25] CHEN P F, CHEN K, MA G X, et al. Numerical Simulation on flow characteristics of the supercritical fluid in Micro-Fin Tube[J]. E3S Web of Conferences, 2021, 257: 03082. doi: 10.1051/e3sconf/202125703082
    [26] ZHU K, XU G Q, TAO Z, et al. Flow frictional resistance characteristics of kerosene RP–3 in horizontal circular tube at supercritical pressure[J]. Experimental Thermal and Fluid Science, 2013, 44: 245–252. doi: 10.1016/j.expthermflusci.2012.06.014
    [27] LI W, HUANG D, XU G Q, et al. Heat transfer to aviation kerosene flowing upward in smooth tubes at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2015, 85: 1084–1094. doi: 10.1016/j.ijheatmasstransfer.2015.01.079
    [28] HONG X Q, HUANG D, LI W, et al. Heat transfer characteristics of supercritical aviation kerosene at different tube diameters[C]//Proc of the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. 2016. doi: 10.1115/icnmm2016-8096
    [29] DENG H W, ZHANG C B, XU G Q, et al. Visualization experiments of a specific fuel flow through quartz-glass tubes under both sub- and supercritical conditions[J]. Chinese Journal of Aeronautics, 2012, 25(3): 372–380. doi: 10.1016/S1000-9361(11)60398-1
    [30] TAO Z, CHENG Z Y, Zhu J Q, et al. Large eddy simulation of supercritical heat transfer to hydrocarbon fuel[J]. International Journal of Heat and Mass Transfer, 2018, 121: 1251–1263. doi: 10.1016/j.ijheatmasstransfer.2018.01.089
    [31] CHEN Y Q, LI Y, LIU D C, et al. Influences of accelerating states on supercritical n-decane heat transfer in a horizontal tube applied for scramjet engine cooling[J]. Aerospace Science and Technology, 2021, 109: 106424. doi: 10.1016/j.ast.2020.106424
    [32] 芦泽龙, 严俊杰, 祝银海, 等. 碳氢燃料在旋转通道中传热的数值模拟[J]. 工程热物理学报, 2015, 36(11): 2498–2501.

    LU Z L, YAN J J, ZHU Y H, et al. Numerical simulation of heat transfer of hydrocarbon fuels in rotating channel[J]. Journal of Engineering Thermophysics, 2015, 36(11): 2498–2501.
    [33] 芦泽龙, 祝银海, 郭宇轩, 等. 旋转条件下超临界压力正癸烷径向入流时的对流换热[J]. 推进技术, 2019, 40(6): 1332–1340. doi: 10.13675/j.cnki.tjjs.180412

    LU Z L, ZHU Y H, GUO Y X, et al. Convective heat transfer in radial inflow of supercritical pressure n-decane under rotating conditions[J]. Journal of Propulsion Techno-logy, 2019, 40(6): 1332–1340. doi: 10.13675/j.cnki.tjjs.180412
    [34] JIANG P X, LU Z L, GUO Y X, et al. Experimental investigation of convective heat transfer of hydrocarbon fuels at supercritical pressures within rotating centrifugal channel[J]. Applied Thermal Engineering, 2019, 147: 101–112. doi: 10.1016/j.applthermaleng.2018.10.039
    [35] 单维佶, 祝银海, 姜培学. 超临界压力正癸烷旋转通道内对流换热实验研究[J]. 工程热物理学报, 2020, 41(2): 455–460.

    SHAN W J, ZHU Y H, JIANG P X. Experimental study on the convective heat transfer of supercritical pressure N-decane in rotating channel[J]. Journal of Engineering Thermophysics, 2020, 41(2): 455–460.
    [36] HUANG D, WU Z, SUNDEN B, et al. A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress[J]. Applied Energy, 2016, 162: 494–505. doi: 10.1016/j.apenergy.2015.10.080
    [37] HUANG D, LI W, CHEN J X, et al. Heat transfer characteristics of aviation kerosene flowing in enhanced tubes at supercritical pressure[J]. Journal of Thermal Science and Engineering Applications, 2020, 12(3): 031013. doi: 10.1115/1.4044904
    [38] DARIO E R, TADRIST L, PASSOS J C. Review on two-phase flow distribution in parallel channels with macro and micro hydraulic diameters: main results, analyses, trends[J]. Applied Thermal Engineering, 2013, 59(1-2): 316–335. doi: 10.1016/j.applthermaleng.2013.04.060
    [39] YU J J, JIANG L B, YU J, et al. Flow and heat transfer of supercritical RP–3 kerosene in an inclined rectangular channel heated on one side[J]. International Communi-cations in Heat and Mass Transfer, 2022, 133: 105933. doi: 10.1016/j.icheatmasstransfer.2022.105933
    [40] FU Y C, ZHI T, XU G Q, et al. Experimental study of flow distribution for aviation kerosene in parallel helical tubes under supercritical pressure[J]. Applied Thermal Engineer-ing, 2015, 90: 102–109. doi: 10.1016/j.applthermaleng.2015.06.082
    [41] ZHANG N, FU Y C, HUANG H R, et al. Flow resistance characteristics of a specific fuel RP–3 in helical tubes at supercritical pressure with uniform heat flux[C]//Proceedings of ASME 2017 International Mechanical Engineering Congress and Exposition. 2018 doi: 10.1115/IMECE2017-70806
    [42] LIN K C, COX-STOUFFER S K, KENNEDY P, et al. Expansion of supercritical methane/ethylene jets in a quiescent subcritical environment[C]//Proc of the 41st Aerospace Sciences Meeting and Exhibit. 2003: 483. doi: 10.2514/6.2003-483
    [43] LIN K C, COX-STOUFFER S K, JACKSON T A. Structures and phase transition processes of supercritical methane/ethylene mixtures injected into a subcritical environment[J]. Combustion Science and Technology, 2006, 178(1-3): 129–160. doi: 10.1080/00102200500290716
    [44] EDWARDS J, LIN K C, RYAN M, et al. Simulation of supercritical ethylene condensation using homogeneous nucleation theory[C]//Proc of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. AIAA, 2010: 97. doi: 10.2514/6.2010-97
    [45] STAR A M, EDWARDS J R, LIN K C, et al. Numerical simulation of injection of supercritical ethylene into nitrogen[J]. Journal of Propulsion and Power, 2006, 22(4): 809–819. doi: 10.2514/1.16621
    [46] 高伟, 林宇震, 张弛. 超临界燃料在喷嘴附近的相变和流动过程[J]. 推进技术, 2019, 40(3): 635–642. doi: 10.13675/j.cnki.tjjs.180190

    GAO W, LIN Y Z, ZHANG C. Phase transition and flow process of supercritical fuel near injector nozzle[J]. Journal of Propulsion Technology, 2019, 40(3): 635–642. doi: 10.13675/j.cnki.tjjs.180190
    [47] NEWMAN J A, BRZUSTOWSKI T A. Behavior of a liquid jet near the thermodynamic critical region[J]. AIAA Journal, 1971, 9(8): 1595–1602. doi: 10.2514/3.49962
    [48] CHEHROUDI B, TALLEY D, COY E. Initial growth rate and visual characteristics of a round jet into a sub- to supercritical environment of relevance to rocket, gas turbine, and diesel engines[C]//Proc of the 37th Aerospace Sciences Meeting and Exhibit, Reno, NV. Reston, Virginia: AIAA, 1999: 206. doi: 10.2514/6.1999-206
    [49] ZONG N, MENG H, HSIEH S Y, et al. A numerical study of cryogenic fluid injection and mixing under supercritical conditions[J]. Physics of Fluids, 2004, 16(12): 4248–4261. doi: 10.1063/1.1795011
    [50] MAYER W, TAMURA H. Propellant injection in a liquid oxygen/gaseous hydrogen rocket engine[J]. Journal of Propulsion and Power, 1996, 12(6): 1137–1147. doi: 10.2514/3.24154
    [51] MAYER W, SCHIK A, SCHӒFFLER M, et al. Injection and mixing processes in high-pressure liquid oxygen/gaseous hydrogen rocket combustors[J]. Journal of Propulsion and Power, 2000, 16(5): 823–828. doi: 10.2514/2.5647
    [52] MAYER W, TELAAR J, BRANAM R, et al. Raman measurements of cryogenic injection at supercritical pressure[J]. Heat and Mass Transfer, 2003, 39(8): 709–719. doi: 10.1007/s00231-002-0315-x
    [53] BRANAM R, MAYER W. Characterization of cryogenic injection at supercritical pressure[J]. Journal of Propulsion and Power, 2003, 19(3): 342–355. doi: 10.2514/2.6138
    [54] LEE H C, KIM H S, LEE Y S, et al. Jet disintegration in supercritical environments[J]. Experimental Thermal and Fluid Science, 2020, 115: 110098. doi: 10.1016/j.expthermflusci.2020.110098
    [55] SUSLOV D I, HARDI J S, OSCHWALD M. Full-length visualisation of liquid oxygen disintegration in a single injector sub-scale rocket combustor[J]. Aerospace Science and Technology, 2019, 86: 444–454. doi: 10.1016/j.ast.2018.12.027
    [56] ROTHENFLUH T, SCHULER M J, VON ROHR P R. Penetration length studies of supercritical water jets submerged in a subcritical water environment using a novel optical schlieren method[J]. The Journal of Supercritical Fluids, 2011, 57(2): 175–182. doi: 10.1016/j.supflu.2011.02.018
    [57] BANUTI D, RAJU M, MA P C, et al. Seven questions about supercritical fluids - towards a new fluid state diagram[C]//Proc of the 55th AIAA Aerospace Sciences Meeting. 2017: 1106. doi: 10.2514/6.2017-1106
    [58] BANUTI D T, HANNEMANN K. The absence of a dense potential core in supercritical injection: A thermal break-up mechanism[J]. Physics of Fluids, 2016, 28(3): 035103. doi: 10.1063/1.4943038
    [59] LI L, XIE M Z, WEI W, et al. Numerical investigation on cryogenic liquid jet under transcritical and supercritical conditions[J]. Cryogenics, 2018, 89: 16–28. doi: 10.1016/j.cryogenics.2017.10.021
    [60] LAPENNA P E. Characterization of pseudo-boiling in a transcritical nitrogen jet[J]. Physics of Fluids, 2018, 30(7): 077106. doi: 10.1063/1.5038674
    [61] TAGHIZADEH S, JARRAHBASHI D. Proper orthogonal decomposition analysis of turbulent cryogenic liquid jet injection under transcritical and supercritical conditions[J]. Atomization and Sprays, 2018, 28(10): 875–900. doi: 10.1615/atomizspr.2018028999
    [62] SHARAN N, BELLAN J R. Turbulent mixing in super-critical jets: effect of compressibility factor and inflow condition[C]//Proc of the AIAA Scitech 2020 Forum. 2020: 1156. doi: 10.2514/6.2020-1156
    [63] SHAHSAVARI M, WANG B, ZHANG B, et al. Response of supercritical round jets to various excitation modes[J]. Journal of Fluid Mechanics, 2021, 915: A47. doi: 10.1017/jfm.2021.78
    [64] RIES F, OBANDO P, SHEVCHUCK I, et al. Numerical analysis of turbulent flow dynamics and heat transport in a round jet at supercritical conditions[J]. International Journal of Heat and Fluid Flow, 2017, 66: 172–184. doi: 10.1016/j.ijheatfluidflow.2017.06.007
    [65] CHEHROUDI B. Recent experimental efforts on high-pressure supercritical injection for liquid rockets and their implications[J]. International Journal of Aerospace Engineering, 2012, 2012: 121802. doi: 10.1155/2012/121802
    [66] DOUNGTHIP T, ERVIN J S, WILLIAMS T F, et al. Studies of injection of jet fuel at supercritical conditions[J]. Industrial & Engineering Chemistry Research, 2002, 41(23): 5856–5866. doi: 10.1021/ie0109915
    [67] ROY A. Subcritical and supercritical fuel injection and mixing in single and binary species systems[D]. Gainesville: University of Florida, 2012.
    [68] QIU L, REITZ R D. Simulation of supercritical fuel injection with condensation[J]. International Journal of Heat and Mass Transfer, 2014, 79: 1070–1086. doi: 10.1016/j.ijheatmasstransfer.2014.08.081
    [69] MUTHUKUMARAN C K, VAIDYANATHAN A. Experi-mental study of elliptical jet from sub to supercritical conditions[J]. Physics of Fluids, 2014, 26(4): 044104. doi: 10.1063/1.4871483
    [70] MUTHUKUMARAN C K, KANNAIYAN K, VAIDYANATHAN A. Transition in the elliptical jet characteristics from super to subcritical conditions[M]//Fluid Mechanics and Fluid Power–Contemporary Research. New Delhi: Springer India, 2016: 1029-1038. doi: 10.1007/978-81-322-2743-4_97
    [71] WEI W, LIU H S, XIE M Z, et al. Large eddy simulation and proper orthogonal decomposition analysis of fuel injection under trans/supercritical conditions[J]. Computers & Fluids, 2019, 179: 150–162. doi: 10.1016/j.compfluid.2018.10.012
    [72] 刘凯强. 再生冷却超燃冲压发动机喷嘴流量特性研究[D]. 长沙: 国防科技大学, 2019.

    LIU K Q. Research on flow characteristics of heated kerosene of nozzle in regeneration cooling scramjet[D]. Changsha: National University of Defense Technology, 2019. doi: 10.27052/d.cnki.gzjgu.2019.001070
    [73] YANG K, WANG Z G, PAN Y, et al. Experimental investigation of the expansion characteristics of vaporized kerosene jets in a quiescent atmospheric environment[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2020, 234(3): 896–907. doi: 10.1177/0954410019892682
    [74] SHIN B, KIM D, SON M, et al. Effects of supercritical environment on hydrocarbon-fuel injection[J]. Journal of Thermal Science, 2017, 26(2): 183–191. doi: 10.1007/s11630-017-0928-5
    [75] ZHENG Z L, YANG Z F. Numerical simulation of the influence of environmental and jet parameters on super-critical injection[J]. Applied Thermal Engineering, 2017, 127: 925–932. doi: 10.1016/j.applthermaleng.2017.06.146
    [76] WENSING M, VOGEL T, GÖTZ G. Transition of diesel spray to a supercritical state under engine conditions[J]. International Journal of Engine Research, 2016, 17(1): 108–119. doi: 10.1177/1468087415604281
    [77] 范珍涔, 范玮. 流动参数对超临界喷射特性影响的数值模拟[J]. 航空学报, 2013, 34(5): 1018–1027. doi: 10.7527/S1000-6893.2013.0191

    FAN Z C, FAN W. Numerical simulation on effects of flow parameters on supercritical injection characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1018–1027. doi: 10.7527/S1000-6893.2013.0191
    [78] 范珍涔. 液态碳氢燃料闪蒸及超临界喷射研究[D]. 西安: 西北工业大学, 2013.

    FAN Z C. Investigation on flash vaporization and super-critical jet of liquid hydrocarbon fuel[D]. Xi’an: North-western Polytechnical University, 2013.
    [79] 靳乐. RP–3航空煤油的超临界喷射、蒸发和爆震燃烧特性研究[D]. 西安: 西北工业大学, 2016.

    JIN L. Investigations on the supercritical injection, evaporation, and detonation characteristics of the RP–3 aviation kerosene[D]. Xi’an: Northwestern Polytechnical University, 2016.
    [80] FALGOUT Z, RAHM M, WANG Z, et al. Evidence for supercritical mixing layers in the ECN Spray A[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1579–1586. doi: 10.1016/j.proci.2014.06.109
    [81] 肖国炜. 超临界环境下液态碳氢燃料的蒸发和喷雾特性研究[D]. 北京: 清华大学, 2019.

    XIAO G W. On the evaporation and spray characteristics of liquid hydrocarbon fuels in supercritical environments[D]. Beijing: Tsinghua University, 2019. doi: 10.27266/d.cnki.gqhau.2019.000154
    [82] ELAM S K. Subscale LOX/hydrogen testing with a modular chamber and a swirl coaxial injector[C]//Proc of the 27th Joint Propulsion Conference. 1991: 1874. doi: 10.2514/6.1991-1874
    [83] SASAKI M, SAKAMOTO H, TAKAHASHI M, et al. Comparative study of recessed and non-recessed swirl coaxial injectors[C]//Proc of the 33rd Joint Propulsion Conference and Exhibit. 1997: 2907. doi: 10.2514/6.1997-2907
    [84] TAMURA H, SAKAMOTO H, TAKAHASHI M, et al. LOX/LH2 subscale swirl coaxial injector testing[C]//Proc of the 33rd Joint Propulsion Conference and Exhibit. 1997: 2906. doi: 10.2514/6.1997-2906
    [85] ZONG N, YANG V. Dynamics of simplex swirl injectors for cryogenic propellants at supercritical conditions[C]//Proc of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. 2004.
    [86] WANG X J, HUO H F, WANG Y X, et al. Comprehensive study of cryogenic fluid dynamics of swirl injectors at supercritical conditions[J]. AIAA Journal, 2017, 55(9): 3109–3119. doi: 10.2514/1.J055868
    [87] CHO S, PARK G, CHUNG Y, et al. Surface instability on cryogenic swirl flow at sub- to supercritical conditions[J]. Journal of Propulsion and Power, 2014, 30(4): 1038–1046. doi: 10.2514/1.B35071
    [88] CHO S, KIM H, YOON Y, et al. Dynamic characteristics of a cryogenic swirl flow under supercritical conditions[J]. Aerospace Science and Technology, 2016, 51: 162–170. doi: 10.1016/j.ast.2016.02.008
    [89] POORMAHMOOD A, SHAHSAVARI M, FARSHCHI M. Numerical study of cryogenic swirl injection under supercritical conditions[J]. Journal of Propulsion and Power, 2017, 34(2): 428–437. doi: 10.2514/1.B36569
    [90] ZEATON G W P, CROOK L C, GUILDENBECHER D R, et al. An experimental study of super-critical fluid jets[C]//Proceedings of the 19th European Conference on Liquid Atomization and Spray System. 2005.
    [91] SEEBALD P J, SOJKA P E. An experimental study of transcritical CO2 injection[C]// Proc of the ILASS-Europe 2008 Conference. 2008.
    [92] RACHEDI R R, CROOK L, SOJKA P E. A study of supercritical jet fuel injection[C]//Proceedings of ASME 2007 International Mechanical Engineering Congress and Exposition. 2009: 837-845. doi: 10.1115/IMECE2007-43445
    [93] RACHEDI R R, CROOK L C, SOJKA P E. An experimental study of swirling supercritical hydrocarbon fuel jets[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(8): 081502. doi: 10.1115/1.3124668
    [94] WANG X J, WANG Y X, YANG V. Three-dimensional flow dynamics and mixing in a gas-centered liquid-swirl coaxial injector at supercritical pressure[J]. Physics of Fluids, 2019, 31(6): 065109. doi: 10.1063/1.5097163
    [95] WANG X J, ZHANG L W, LI Y X, et al. Supercritical combustion of gas-centered liquid-swirl coaxial injectors for staged-combustion engines[J]. Combustion and Flame, 2018, 197: 204–214. doi: 10.1016/j.combustflame.2018.07.018
    [96] MILAN P J, WANG X J, HICKEY J P, et al. Accelerating numerical simulations of supercritical fluid flows using deep neural networks[C]//Proc of the AIAA Scitech 2020 Forum. 2020: 1157. doi: 10.2514/6.2020-1157
    [97] ZONG N, YANG V. Mixing and combustion of swirl Co-axial injectors for cryogenic propellants at supercritical conditions[C]//Proc of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. 2004: 1332. doi: 10.2514/6.2004-1332
    [98] MILAN P J, WANG X J, YANG V. Three-dimensional investigation of fluid dynamics in a rocket engine injector at supercritical pressure[C]// Proc of the ILASS-Americas 31st Annual Conference on Liquid Atomization and Spray Systems. 2021.
    [99] CHEHROUDI B. Physical hypothesis for the combustion instability in cryogenic liquid rocket engines[J]. Journal of Propulsion and Power, 2010, 26(6): 1153–1160. doi: 10.2514/1.38451
    [100] XIA J, ZHANG Q K, HE Z Y, et al. Experimental study on diesel's twin injection and spray impingement character-istics under marine engine's conditions[J]. Fuel, 2021, 302: 121133. doi: 10.1016/j.fuel.2021.121133
  • 加载中
图(10)
计量
  • 文章访问数:  332
  • HTML全文浏览量:  136
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-29
  • 修回日期:  2022-10-13
  • 录用日期:  2022-11-02
  • 网络出版日期:  2023-02-10

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日