留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

免标定波长调制吸收光谱技术在高焓流场诊断中的应用

陈卫 王磊 伍越

陈卫, 王磊, 伍越. 免标定波长调制吸收光谱技术在高焓流场诊断中的应用[J]. 实验流体力学, doi: 10.11729/syltlx20220099
引用本文: 陈卫, 王磊, 伍越. 免标定波长调制吸收光谱技术在高焓流场诊断中的应用[J]. 实验流体力学, doi: 10.11729/syltlx20220099
CHEN W, WANG L, WU Y. Application of a calibration-free wavelength modulation spectroscopy in the diagnosis of high-enthalpy flow field[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220099
Citation: CHEN W, WANG L, WU Y. Application of a calibration-free wavelength modulation spectroscopy in the diagnosis of high-enthalpy flow field[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220099

免标定波长调制吸收光谱技术在高焓流场诊断中的应用

doi: 10.11729/syltlx20220099
基金项目: 国家重点研发计划资助项目(2020YFA0405700)
详细信息
    作者简介:

    陈卫:(1985—),男,湖南益阳人,博士,副研究员。研究方向:高温流场非接触测量与高温气体研究。通信地址:四川省绵阳市中国空气动力研究与发展中心超高速空气动力研究所(621000)。E-mail:chenwei@cardc.com

    通讯作者:

    E-mail:chenwei@cardc.cn

  • 中图分类号: TL65

Application of a calibration-free wavelength modulation spectroscopy in the diagnosis of high-enthalpy flow field

  • 摘要: 高温气体参数是分析高焓流场热化学特性及其与防热材料作用机理的重要基础,但由于流场温度高、气体化学反应剧烈,导致这些参数的测量信号难以标定,使得其定量测量一直非常困难。波长调制技术作为一种激光吸收光谱技术,具有抗干扰能力强的优点,非常适合环境复杂的工业现场应用。通过理论仿真与实验测量的谐波信号进行迭代拟合,发展了免标定的波长调制技术数据处理方法,并成功应用到高频感应等离子体流场和电弧加热流场诊断中。高频感应等离子体流场的温度和电子密度测量结果与直接吸收法测量结果比较吻合,电弧加热流场焓值测量结果与能量平衡法计算结果相对误差约10%,验证了免标定数据处理方法的可靠性,为高焓流场参数的定量测量提供了一种有力手段。
  • 图  1  数据处理流程

    Figure  1.  Schematic diagram of data processing

    图  2  高频感应加热器

    Figure  2.  High frequency induction plasma heater

    图  3  WMS和DAS直接测量信号

    Figure  3.  Detected signals of WMS and DAS

    图  4  DAS信号(左)与WMS二次谐波信号(右)的拟合结果

    Figure  4.  Signal fittings of DAS (left) and WMS-2f (right)

    图  5  温度测量结果比较

    Figure  5.  Comparison of the measured temperature

    图  6  电子密度测量结果比较

    Figure  6.  Comparison of the measured electron density

    图  7  电弧加热器以及光学测量压缩片示意图

    Figure  7.  Arc-heater and its optical measuring disk

    图  8  TDLAS信号的标准具效应

    Figure  8.  The etalon effect of TDLAS signal

    图  9  加热器的电流和弧室压强监测参数

    Figure  9.  The pressure and current of arc-heater

    图  10  WMS-2f信号与DAS信号的对比

    Figure  10.  Signal comparison of WMS-2f to the DAS

    图  11  电弧流场WMS-2f信号的理论仿真效果

    Figure  11.  Theoretical fitting of WMS-2f from arc heated flow

    图  12  测量的温度与加热器功率参数的对比

    Figure  12.  Comparison of the measured temperature with power

    图  13  测量的均匀展宽与加热器弧室压强的对比

    Figure  13.  Comparison of the measured homogeneous broadening with pressure

    表  1  氧原子谱线参数

    Table  1.   Spectral parameters of atomic oxygen

    λ (nm)gigjEi (cm−1)Ej (cm−1)Aji (107s−1)
    777.1945773768.286631.4543.69
    下载: 导出CSV

    表  2  加热器运行状态参数

    Table  2.   Running parameters of the arc-heater

    状态弧室压力
    (MPa)
    热气流量
    (kg/s)
    冷气流量
    (kg/s)
    总功率
    (MW)
    10.61190.3050.0997.27
    20.6390.3030.0968.6
    30.65820.3030.0979.8
    40.85910.4080.11311.68
    51.03030.5090.11613.29
    下载: 导出CSV

    表  3  焓值测量结果

    Table  3.   The measured results of enthalpy

    状态能量平衡焓
    (MJ/Kg)
    TDLAS焓
    (MJ/Kg)
    相对误差
    213.912.7−8.4%
    314.713.3 −9.3%
    413.112.7 −2.8%
    512.212.1−0.8%
    下载: 导出CSV
  • [1] 聂伟, 阚瑞峰, 杨晨光, 等. 可调谐二极管激光吸收光谱技术的应用研究进展[J]. 中国激光, 2018, 45(9): 9–29.

    NIE W, KAN R F, YANG C G, et al. Research progress on the application of tunable diode laser absorption spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 9–29.
    [2] 胡尚炜, 殷可为, 涂晓波, 等. 基于中红外吸收光谱技术测量高温流场CO浓度研究[J]. 实验流体力学, 2021, 35(1): 60–66. doi: 10.11729/syltlx20190126

    HU S W, YIN K W, TU X B, et al. Measurement of CO concentration in flat flame based on mid-infrared absorption spectroscopy[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 60–66. doi: 10.11729/syltlx20190126
    [3] 欧东斌, 陈连忠, 董永晖, 等. 电弧风洞中基于TDLAS的气体温度和氧原子浓度测试[J]. 实验流体力学, 2015, 29(3): 62–67. doi: 10.11729/syltlx20140071

    OU D B, CHEN L Z, DONG Y H, et al. Measurements of gas temperature and atomic oxygen density in the arc-heated wind tunnel based on TDLAS[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3): 62–67. doi: 10.11729/syltlx20140071
    [4] 曾徽, 余西龙, 李飞, 等. 中红外吸收光谱测量激波风洞自由流中NO浓度和温度[J]. 实验流体力学, 2015, 29(2): 79–83. doi: 10.11729/syltlx20140044

    ZENG H, YU X L, LI F, et al. Nitric oxide concentration and temperature measurement for shock tunnel free stream using mid-infrared absorption spectroscopy[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(2): 79–83. doi: 10.11729/syltlx20140044
    [5] SUPPLEE J M, WHITTAKER E A, LENTH W. Theoretical description of frequency modulation and wavelength modulation spectroscopy[J]. Applied Optics, 1994, 33(27): 6294–6302. doi: 10.1364/AO.33.006294
    [6] 贾良权, 刘文清, 阚瑞峰, 等. 波长调制-TDLAS技术测量风洞中氧气流速方法研究[J]. 中国激光, 2015, 42(7): 312–319.

    JIA L Q, LIU W Q, KAN R F, et al. Study on oxygen velocity measurement in wind tunnel by wavelength modulation- TDLAS technology[J]. Chinese Journal of Lasers, 2015, 42(7): 312–319.
    [7] GOLDENSTEIN C S, SCHULTZ I A, JEFFRIES J B, et al. TDL absorption sensor for temperature measurements in high-pressure and high-temperature gases[J]. 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2012: 1061. doi: 10.2514/6.2012-1061
    [8] 朱晓睿, 卢伟业, 饶雨舟, 等. TDLAS直接吸收法测量CO2的基线选择方法[J]. 中国光学, 2017, 10(4): 455–461. doi: 10.3788/co.20171004.0455

    ZHU X R, LU W Y, RAO Y Z, et al. Selection of baseline method in TDLAS direct absorption CO2 measurement[J]. Chinese Optics, 2017, 10(4): 455–461. doi: 10.3788/co.20171004.0455
    [9] 陈卫, 伍越, 黄祯君, 等. 基于TDLAS的电弧风洞流场Cu组分监测[J]. 航空学报, 2019, 40(8): 122841.

    CHEN W, WU Y, HUANG Z J, et al. Monitoring copper species in flow of arc-heated wind tunnel based on TDLAS[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122841.
    [10] 阎杰, 翟畅, 王晓牛, 等. L-M非线性拟合的TDLAS氧气测量研究[J]. 光谱学与光谱分析, 2015, 35(6): 1497–1500. doi: 10.3964/j.issn.1000-0593(2015)06-1497-04

    YAN J, ZHAI C, WANG X N, et al. The research of oxygen measurement by TDLAS based on levenberg-marquardt nonlinear fitting[J]. Spectroscopy and Spectral Analysis, 2015, 35(6): 1497–1500. doi: 10.3964/j.issn.1000-0593(2015)06-1497-04
    [11] WANG K Y, SHAO J, SHAO L G, et al. A pressure-calibration method of wavelength modulation spectroscopy in sealed microbial growth environment[J]. Chinese Physics B, 2021, 30(5): 262–267.
    [12] 王振, 杜艳君, 丁艳军, 等. 基于波长调制-直接吸收光谱方法的CO分子1567nm处谱线参数高精度标定[J]. 物理学报, 2020, 69(6): 89–96.

    WANG Z, DU Y J, DING Y J, et al. High precision calibration of spectral parameters of CO at 1567 nm based on wavelength modulation-directabsorption spectroscopy[J]. Acta Physica Sinica, 2020, 69(6): 89–96.
    [13] ZHU Y K, ZHOU B, WANG Y H, et al. Research on Calibration-Free Fixed-Point Wavelength Modulation Spectroscopy Based on Wavenumber Drift-Correction Algorithm[J]. Acta Optica Sinica, 2019, 39(8): 0830001. doi: 10.3788/AOS201939.0830001
    [14] CHEN W, WU Y, LUO Y. Broadening-independent demodulation for wavelength modulation spectroscopy based on even-order harmonics[J]. Spectroscopy Letters, 2018, 51(1): 61–66. doi: 10.1080/00387010.2017.1422523
    [15] 臧益鹏, 许振宇, 夏晖晖, 等. 基于免标定波长调制技术的高温谱线参数测量方法[J]. 中国激光, 2020, 47(10): 278–285.

    ZANG Y P, XU Z Y, XIA H H, et al. Method for measuring high temperature spectral line parameters based on calibration-free wavelength modulation technology[J]. Chinese Journal of Lasers, 2020, 47(10): 278–285.
    [16] SWINEHART D F. The Beer-Lambert Law[J]. J. Chem. Educ, 1962, 39(7): 333. doi: 10.1021/ed039p333
    [17] NIST Atomic Spectra Database (version 5.9) [EB/OL]. [2022-09-19]. https://www.nist.gov/pml/atomic-spectra-database.
    [18] 沃尔夫冈·戴姆特瑞德. 激光光谱学 [M]. 姬扬, 译. 北京: 科学出版社, 2012.
    [19] GRIEM H R. Spectral line broadening by plasmas[M]. New York: Academic Press, 1974.
    [20] 曾徽, 陈连忠, 林鑫, 等. 电弧加热器高温流场激光吸收光谱诊断[J]. 实验流体力学, 2017, 31(4): 28–33. doi: 10.11729/syltlx20160179

    ZENG H, CHEN L Z, LIN X, et al. Laser absorption spectroscopy diagnostics in the arc-heater of an arcjet facility[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 28–33. doi: 10.11729/syltlx20160179
    [21] 罗跃, 周玮, 杨鸿, 等. 电弧加热器湍流平板试验流场计算分析[J]. 实验流体力学, 2017, 31(2): 86–92. doi: 10.11729/syltlx20160088

    LUO Y, ZHOU W, YANG H, et al. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86–92. doi: 10.11729/syltlx20160088
    [22] 朱新新, 隆永胜, 石友安, 等. 稳态焓探针的优化设计与试验验证[J]. 实验流体力学, 2020, 34(4): 87–93. doi: 10.11729/syltlx20190062

    ZHU X X, LONG Y S, SHI Y A, et al. Optimal design of steady enthalpy probe and test verification[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 87–93. doi: 10.11729/syltlx20190062
    [23] 朱新新, 杨庆涛, 陈卫, 等. 高温气流总焓测试技术综述[J]. 计测技术, 2018, 38(5): 5–11.

    ZHU X X, YANG Q T, CHEN W, et al. Overview of total enthalpy measurement technique for high temperature flow[J]. Metrology & Measurement Technology, 2018, 38(5): 5–11.
    [24] MATSUI M, KOMURASAKI K, HERDRICH G, et al. Enthalpy measurement in inductively heated plasma generator flow by laser absorption spectroscopy[J]. AIAA Journal, 2005, 43(9): 2060–2064. doi: 10.2514/1.14128
    [25] MATSUI M, KOMURASAKI K, ARAKAWA Y, et al. Enthalpy measurement of inductively heated airflow[J]. Journal of Spacecraft and Rockets, 2008, 45(1): 155–158. doi: 10.2514/1.34369
    [26] BABIKIAN D, PARK C, RAICHE G. Spectroscopic determination of enthalpy in an arc-jet wind tunnel[C]//Proc of the 33rd Aerospace Sciences Meeting and Exhibit. 1995. doi: 10.2514/6.1995-712
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  74
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 修回日期:  2022-11-08
  • 录用日期:  2022-12-23
  • 网络出版日期:  2023-06-05

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日