留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于射流控制的飞翼布局飞行器大迎角横航向非指令运动抑制

葛增冉 史志伟 董益章 陈坤 陈杰

葛增冉,史志伟,董益章,等. 基于射流控制的飞翼布局飞行器大迎角横航向非指令运动抑制[J]. 实验流体力学. doi: 10.11729/syltlx20220104
引用本文: 葛增冉,史志伟,董益章,等. 基于射流控制的飞翼布局飞行器大迎角横航向非指令运动抑制[J]. 实验流体力学. doi: 10.11729/syltlx20220104
GE Z R,SHI Z W,DONG Y Z,et al. Roll-yaw control of flying wing aircraft at a high angle of attack based on jet control[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220104
Citation: GE Z R,SHI Z W,DONG Y Z,et al. Roll-yaw control of flying wing aircraft at a high angle of attack based on jet control[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220104

基于射流控制的飞翼布局飞行器大迎角横航向非指令运动抑制

doi: 10.11729/syltlx20220104
基金项目: 国家自然科学基金(12072155);航空科学基金(2019ZA052001);江苏省自然科学基金(BK20200482)
详细信息
    作者简介:

    葛增冉:(1998—),男,山东聊城人,硕士研究生。研究方向:主动射流控制。通信地址:江苏省南京市秦淮区御道街29号南京航空航天大学航空学院(210016)。E-mail:gezengran@qq.com

    通讯作者:

    E-mail:szwam@nuaa.edu.cn

  • 中图分类号: V211

Roll-yaw control of flying wing aircraft at a high angle of attack based on jet control

  • 摘要: 由于复杂的流场结构和涡系间的相互影响,飞翼布局飞行器在大迎角区域易发生横航向非指令运动。为抑制这种运动,基于现有的两种主动射流控制技术,在飞翼布局飞行器上布置了两组射流激励器,并通过风洞测力实验验证了激励器的控制效果。通过大迎角横航向风洞虚拟飞行实验,捕捉了飞翼布局飞行器横航向非指令运动现象,并运用比例–积分–微分(PID)控制和深度强化学习方法对横航向非指令运动进行抑制。风洞实验表明,深度强化学习方法对高耦合、非线性问题的控制效果更好,训练得到的智能体模型能够有效抑制飞翼布局飞行器的横航向非指令运动。
  • 图  1  SACCON平面图与几何参数

    Figure  1.  Configuration of SACCON

    图  2  二自由度释放机构

    Figure  2.  Two-degree-of-freedom device

    图  3  风洞实验模型安装图

    Figure  3.  Wind tunnel experiment model setup

    图  4  射流控制系统示意图

    Figure  4.  The jet control system

    图  5  射流激励器布置示意图

    Figure  5.  Position of jet actuators

    图  6  横航向力矩系数导数曲线

    Figure  6.  Derivative of roll and yaw moment coefficient

    图  7  18°迎角下模型姿态角随时间变化

    Figure  7.  Roll and yaw angel time history at α=18°

    图  8  22°迎角下模型姿态角随时间变化

    Figure  8.  Roll and yaw angel time history at α=22°

    图  9  18°迎角下的飞行器横航向力矩系数

    Figure  9.  Roll and yaw moment coefficient at α=18°

    图  10  22°迎角下的飞行器横航向力矩系数

    Figure  10.  Roll and yaw moment coefficient at α=22°

    图  11  PID控制原理图

    Figure  11.  Schematic of the PID algorithm in this work

    图  12  18°初始迎角PID控制结果

    Figure  12.  The time history of roll and yaw angel with PID controller at α=18°

    图  13  22°初始迎角PID控制结果

    Figure  13.  The time history of roll and yaw angel with PID controller at α=22°

    图  14  智能体–环境的循环交互

    Figure  14.  The basic Reinforcement Learning scenario

    图  15  18°初始迎角下的模型测试结果

    Figure  15.  The time history of roll and yaw angel with blowing momentum coefficient during tests at α=18°

    图  16  22°初始迎角下的模型测试结果

    Figure  16.  The time history of roll and yaw angel with blowing momentum coefficient during tests at α=22°

    表  1  Φ14 六分量杆式天平载荷与精度

    Table  1.   Load capacities of Φ14 beam balance

    参数设计载荷准确度%精确度%
    X15.68 N0.490.08
    Y58.80 N0.100.03
    Z21.56 N0.480.06
    Mx2.060 N·m0.400.02
    My1.37 N·m0.460.01
    Mz3.72 N·m0.130.08
    下载: 导出CSV

    表  2  射流流量与射流动量系数对应关系

    Table  2.   Jet flow rate and jet momentum coefficient

    射流流量/(L·min−1射流动量系数
    展向射流反向射流
    000
    250.00050.0075
    350.00100.0147
    下载: 导出CSV
  • [1] BOWLUS J, MULTHOPP D, BANDA S, et al. Challenges and opportunities in tailless aircraft stability and control[C]//Proc of the Guidance, Navigation, and Control Conference. 1997: 3830. doi: 10.2514/6.1997-3830
    [2] ERICSSON L E. Revisiting unresolved dynamic stall phenomena[J]. Journal of Aircraft, 2000, 37(6): 1117–1122. doi: 10.2514/2.2722
    [3] GREENWELL D. A review of unsteady aerodynamic modelling for flight dynamics of manoeuvrable aircraft[C]//Proc of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. 2004: 5276. doi: 10.2514/6.2004-5276
    [4] 王方剑, 解克, 刘金, 等. 小展弦比飞翼标模非定常流动及自由摇滚特性研究[J]. 航空学报.doi: 10.7527/S1000-6893.2021.26449.

    WANG F J, XIE K, LIU J, et al. Unsteady flow and wing rock characteristics of low aspect ratio flying-wing[J]. Acta Aeronautica et Astronautica Sinica. doi: 10.7527/S1000-6893. 2021.26449.
    [5] NELSON R C, PELLETIER A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Sciences, 2003, 39(2-3): 185–248. doi: 10.1016/S0376-0421(02)00088-X
    [6] 王海峰, 展京霞, 陈科, 等. 战斗机大迎角气动特性研究技术的发展与应用[J]. 空气动力学学报, 2022, 40(1): 1–25. doi: 10.7638/kqdlxxb-2021.0306

    WANG H F, ZHAN J X, CHEN K, et al. Development and application of aerodynamic research technologies for fighters at high angle of attack[J]. Acta Aerodynamica Sinica, 2022, 40(1): 1–25. doi: 10.7638/kqdlxxb-2021.0306
    [7] 周铸, 余永刚, 刘刚, 等. 飞翼布局组合舵面航向控制特性综合研究[J]. 航空学报, 2020, 41(6): 523422. doi: 10.7527/S1000-6893.2019.23422

    ZHOU Z, YU Y G, LIU G, et al. Comprehensive study on yaw control characteristic of combined control surfaces of flying wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523422. doi: 10.7527/S1000-6893.2019.23422
    [8] GURSUL I, WANG Z J. Flow control of tip/edge vortices[J]. AIAA Journal, 2018, 56(5): 1731–1749. doi: 10.2514/1.J056586
    [9] 冯立好, 魏凌云, 董磊, 等. 飞翼布局飞机耦合运动失稳的主动流动控制[J]. 航空学报, 2022, 43(10): 145–156. doi: 10.7527/S1000-6893.2022.27353

    FENG L H, WEI L Y, DONG L, et al. Active flow control for coupled motion instability of flying-wing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 145–156. doi: 10.7527/S1000-6893.2022.27353
    [10] LUO Z B, ZHAO Z J, LIU J F, et al. Novel roll effector based on zero-mass-flux dual synthetic jets and its flight test[J]. Chinese Journal of Aeronautics, 2022, 35(8): 1–6. doi: 10.1016/j.cja.2021.08.015
    [11] WILLIAMS D R, SEIDEL J. Crossed-actuation AFC for lateral-directional control of an ICE-101/saccon UCAV[C]//Proc of the 8th AIAA Flow Control Conference. 2016: 3167. doi: 10.2514/6.2016-3167
    [12] 赵霞, 秦燕华. 一种飞翼布局横航向特性的控制研究[J]. 空气动力学学报, 2008, 26(2): 234–238.

    ZHAO X, QIN Y H. An investigation on controlling lateral characteristics for a flying wing configuration[J]. Acta Aerodynamica Sinica, 2008, 26(2): 234–238.
    [13] PEDREIRO N, ROCK S M, CELIK Z Z, et al. Roll-yaw control at high angle of attack by forebody tangential blowing[J]. Journal of Aircraft, 1998, 35(1): 69–77. doi: 10.2514/2.2261
    [14] 孙全兵, 史志伟, 耿玺, 等. 基于主动流动控制技术的无舵面飞翼布局飞行器姿态控制[J]. 航空学报, 2020, 41(12): 124080. doi: 10.7527/S1000-6893.2015.2020.24080

    SUN Q B, SHI Z W, GENG X, et al. Attitude control of flying wing aircraft without control surfaces based on active flow control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124080. doi: 10.7527/S1000-6893.2015.2020.24080
    [15] 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689. doi: 10.7257/S1000-6893.2020.24689

    ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689. doi: 10.7257/S1000-6893.2020.24689
    [16] RABAULT J, KUCHTA M, JENSEN A, et al. Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control[J]. Journal of Fluid Mechanics, 2019, 865: 281–302. doi: 10.1017/jfm.2019.62
    [17] FAN D X, YANG L, TRIANTAFYLLOU M S, et al. Reinforcement learning for active flow control in experiments[J]. . arXiv preprint arXiv: 2003.03419, 2020.
    [18] 姚张奕, 史志伟, 董益章. 深度强化学习在翼型分离流动控制中的应用[J]. 实验流体力学, 2022, 36(3): 55–64. doi: 10.11729/syltlx20210085

    YAO Z Y, SHI Z W, DONG Y Z. Deep reinforcement learning for the control of airfoil flow separation[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 55–64. doi: 10.11729/syltlx20210085
    [19] CUMMINGS R, SCHUETTE A. An integrated computational/experimental approach to UCAV stability & control estimation: overview of NATO RTO AVT-161[C]//Proc of the 28th AIAA Applied Aerodynamics Conference. 2010: 4392. doi: 10.2514/6.2010-4392
    [20] LOESER T, VICROY D, SCHUETTE A. SACCON static wind tunnel tests at DNW-NWB and 14´ × 22´ NASA LaRC[C]//Proc of the 28th AIAA Applied Aerodynamics Conference. 2010: 4393. doi: 10.2514/6.2010-4393
    [21] DONG Y Z, SHI Z W, CHEN K, et al. The suppression of flying-wing roll oscillations with open and closed-loop spanwise blowing[J]. Aerospace Science and Technology, 2020, 99: 105766. doi: 10.1016/j.ast.2020.105766
    [22] ZHU J C, SHI Z W, SUN Q B, et al. Yaw control of a flying-wing unmanned aerial vehicle based on reverse jet control[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2020, 234(6): 1237–1255. doi: 10.1177/0954410019899513
    [23] DONG Y Z, SHI Z W, CHEN K, et al. Self-learned suppression of roll oscillations based on model-free reinforcement learning[J]. Aerospace Science and Technology, 2021, 116: 106850. doi: 10.1016/j.ast.2021.106850
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  182
  • HTML全文浏览量:  107
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 修回日期:  2022-10-22
  • 录用日期:  2022-11-03
  • 网络出版日期:  2022-12-26

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日