留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型气动荷载作用下磁浮列车动力学特性研究

南凯威 刘梦娟 郝占宙 吴晗 孙振旭

南凯威, 刘梦娟, 郝占宙, 等. 典型气动荷载作用下磁浮列车动力学特性研究[J]. 实验流体力学, 2023, 37(3): 69-83 doi: 10.11729/syltlx20220108
引用本文: 南凯威, 刘梦娟, 郝占宙, 等. 典型气动荷载作用下磁浮列车动力学特性研究[J]. 实验流体力学, 2023, 37(3): 69-83 doi: 10.11729/syltlx20220108
NAN K W, LIU M J, HAO Z Z, et al. Research of dynamic characteristics of maglev train under typical aerodynamic loads[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 69-83 doi: 10.11729/syltlx20220108
Citation: NAN K W, LIU M J, HAO Z Z, et al. Research of dynamic characteristics of maglev train under typical aerodynamic loads[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 69-83 doi: 10.11729/syltlx20220108

典型气动荷载作用下磁浮列车动力学特性研究

doi: 10.11729/syltlx20220108
详细信息
    作者简介:

    南凯威:(1998—),男,河南驻马店人,硕士研究生。研究方向:高速列车空气动力学。通信地址:北京市海淀区北四环西路15号中国科学院力学研究所2号楼(100190)。E-mail:nankaiwei21@mails.ucas.ac.cn

    通讯作者:

    E-mail:sunzhenxu@imech.ac.cn

  • 中图分类号: U270;O355

Research of dynamic characteristics of maglev train under typical aerodynamic loads

  • 摘要: 研究强气动荷载作用下磁浮列车的动力学特性对磁浮列车的悬浮稳定设计有重要意义。本文基于简化的TR08型磁浮列车,采用滑移网格方法,研究了明线单车运行和会车场景下作用在列车上的瞬态气动荷载特性、气动荷载振荡的来源及气动荷载作用下列车的动力学特性。结果表明:TR08型磁浮列车受到的气动荷载随速度的增大而增大,总体呈现尾车 > 头车 > 中车的规律。俯仰力矩在气动荷载中占主导地位,是影响列车安全运行最重要的因素。列车气动荷载振荡主要由下部结构引起,与上/下部结构相比,单节列车俯仰力矩的峰值出现了迟滞现象,偏航力矩则无此现象。单车以600 km/h的速度运行时,悬浮磁铁间隙波动的幅值将超过安全极限;以600 km/h的速度交会时,将发生失稳。本文的结论可为磁浮列车的稳定设计提供参考。
  • 图  1  TR08型磁浮列车模型

    Figure  1.  The model of TR08 maglev train

    图  2  计算域和边界条件示意图

    Figure  2.  Schematic of computational domain and boundary conditions

    图  3  滑移网格法示意图

    Figure  3.  Schematic of sliding mesh method

    图  4  粗网格和细网格计算的气动升力比较

    Figure  4.  Comparison of the lift force of coarse mesh and fine mesh

    图  5  CFD方法有效性验证

    Figure  5.  Verification of the validity of CFD simulation

    图  6  头车气动力时程曲线

    Figure  6.  Histories of aerodynamic forces of the head train

    图  7  中车气动力时程曲线

    Figure  7.  Histories of aerodynamic forces of the middle train

    图  8  尾车气动力时程曲线

    Figure  8.  Histories of aerodynamic forces of the rear train

    图  9  头车气动力矩时程曲线

    Figure  9.  Histories of aerodynamic moments of the head train

    图  10  中车气动力矩时程曲线

    Figure  10.  Histories of aerodynamic moments of the middle train

    图  11  尾车气动力矩时程曲线

    Figure  11.  Histories of aerodynamic moments of the rear train

    图  12  单车运行气动力和气动力矩的时均值

    Figure  12.  Time-averaged values of the aerodynamic forces and moments of single maglev train

    图  13  单车运行时列车周围涡量图

    Figure  13.  Vortex distribution of single maglev train

    图  14  单车运行时列车周围压力分布图

    Figure  14.  Pressure distribution around single maglev train

    图  15  单节列车上部结构和下部结构俯仰力矩

    Figure  15.  Pitching moment of upper and lower part of each carriage

    图  16  单节列车上部结构和下部结构偏航力矩

    Figure  16.  Yawing moment of upper and lower part of each carriage

    图  17  磁浮列车动力学模型

    Figure  17.  Dynamic model of maglev train

    图  18  动力学方法验证

    Figure  18.  Dynamic model verification

    图  19  车体竖向振动曲线

    Figure  19.  Vertical motion of each carriage

    图  20  车体俯仰振动曲线

    Figure  20.  Pitching motion of each carriage

    图  21  每节列车最大竖向振动幅值

    Figure  21.  Maximum vertical motion amplitude of each carriage

    图  22  每节列车最大俯仰振动幅值

    Figure  22.  Maximum pitching motion amplitude of each carriage

    图  23  悬浮磁铁分布

    Figure  23.  Distribution of suspension electromagnets

    图  24  单车运行时悬浮磁铁间隙波动幅值

    Figure  24.  Suspension magnet gap fluctuation amplitude(train running)

    图  25  会车时悬浮磁铁间隙波动幅值

    Figure  25.  Suspension magnet gap fluctuation amplitude(train meeting)

    表  1  数值模拟与实车实验压力对比

    Table  1.   Comparison of pressure

    数值模拟结果/Pa实车实验结果/Pa相对误差
    ΔpL483447571.62%
    ppass3303241.85%
    ΔpT380439553.82%
    下载: 导出CSV

    表  2  单车运行气动力和气动力矩时均值

    Table  2.   Time-averaged values of single maglev train

    速度/(km·h−1)阻力/kN侧向力/kN升力/kN滚动力矩/(kN·m)俯仰力矩/(kN·m)偏航力矩/(kN·m)
    头车
    300−4.160.317.15−0.57−44.88−1.22
    400−7.610.6412.24−1.04−76.88−1.36
    500−12.661.0320.29−1.79−141.97−2.26
    600−19.621.6030.33−3.04−222.58−2.45
    中车
    300−1.480.020.230.061.300.08
    400−2.540.030.490.111.700.52
    500−3.900.040.880.143.921.07
    600−5.510.041.360.156.092.05
    尾车
    300−8.360.4227.890.40310.44−1.45
    400−14.780.5547.860.82535.17−0.93
    500−23.631.1374.081.52830.92−5.63
    600−34.131.87100.042.021124.26−12.23
    下载: 导出CSV

    表  3  磁浮架上部件的参数

    Table  3.   Parameters of components of the maglev frame

    磁浮架上的部件参数
    A型空气弹簧
    水平刚度:1.1 × 105 N/m
    横向刚度:1.1 × 105 N/m
    垂向刚度:1.9 × 105 N/m
    B型空气弹簧
    水平刚度:1.2 × 105 N/m
    横向刚度:1.2 × 105 N/m
    垂向刚度:1.9 × 105 N/m
    摇臂间的扭转元件
    横向刚度:1.0 × 106 N/m
    垂向刚度:2.0 × 105 N/m
    垂向阻尼:5.0 × 105 N·s/m
    横向止挡弹簧
    横向刚度:2.2 × 104 N/m
    下载: 导出CSV
  • [1] 丁叁叁, 姚拴宝, 陈大伟. 高速磁浮列车气动升力特性[J]. 机械工程学报, 2020, 56(8): 228–234. doi: 10.3901/JME.2020.08.228

    DING S S, YAO S B, CHEN D W. Aerodynamic lift force of high-speed maglev train[J]. Journal of Mechanical Engi-neering, 2020, 56(8): 228–234. doi: 10.3901/JME.2020.08.228
    [2] SICLARI M, ENDE R, CARPENTER G. The application of Navier-Stokes computations to the design of high-speed, low-drag magnetically levitated (Maglev) vehicle shapes[C]//Proc of the 13th Applied Aerodynamics Conference. 1995: 1908. doi: 10.2514/6.1995-1908
    [3] TYLL J, LIU D, SCHETZ J, et al. Experimental studies of maglev aerodynamics[C]//Proc of the 13th Applied Aero-dynamics Conference. 1995: 1917. doi: 10.2514/6.1995-1917
    [4] WELLS J, BRITCHER C. An aerodynamic study of an urban maglev vehicle[C]//Proc of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010: 1419. doi: 10.2514/6.2010-1419
    [5] 李人宪, 刘应清, 翟婉明. 高速磁悬浮列车纵向及垂向气动力数值分析[J]. 中国铁道科学, 2004, 25(1): 8–12. doi: 10.3321/j.issn:1001-4632.2004.01.002

    LI R X, LIU Y Q, ZHAI W M. Numerical analysis of aerodynamic force in longitudinal and vertical direction for high-speed maglev train[J]. China Railway Science, 2004, 25(1): 8–12. doi: 10.3321/j.issn:1001-4632.2004.01.002
    [6] 毕海权, 雷波, 张卫华. TR型磁浮列车气动力特性数值计算研究[J]. 铁道学报, 2004, 26(4): 51–54. doi: 10.3321/j.issn:1001-8360.2004.04.011

    BI H Q, LEI B, ZHANG W H. Research on numerical calculation for aerodynamic characteristics of the TR maglev train[J]. Journal of the China Railway Society, 2004, 26(4): 51–54. doi: 10.3321/j.issn:1001-8360.2004.04.011
    [7] 刘堂红, 田红旗, 王承尧. 不同磁浮列车外形的气动性能比较[J]. 国防科技大学学报, 2006, 28(3): 94–98. doi: 10.3969/j.issn.1001-2486.2006.03.020

    LIU T H, TIAN H Q, WANG C Y. Aerodynamic performance comparison of several kind of nose shapes of maglev train[J]. Journal of National University of Defense Technology, 2006, 28(3): 94–98. doi: 10.3969/j.issn.1001-2486.2006.03.020
    [8] HUANG S, LI Z W, YANG M Z. Aerodynamics of high-speed maglev trains passing each other in open air[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 188: 151–160. doi: 10.1016/j.jweia.2019.02.025
    [9] YANG M Z, ZHONG S, ZHANG L, et al. 600 km/h moving model rig for high-speed train aerodynamics[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 227: 105063. doi: 10.1016/j.jweia.2022.105063
    [10] 陈敬旭. 明线上高速磁浮列车交会时压力波与气动性能研究[D]. 兰州: 兰州交通大学, 2018.

    CHEN J X. Study on crossing air pressure pulse and aerodynamic performance of high-speed Maglev trains meeting in the open air[D]. Lanzhou: Lanzhou Jiaotong University, 2018.
    [11] GAO D G, NI F, LIN G B, et al. Aerodynamic analysis of pressure wave of high-speed maglev vehicle crossing: modeling and calculation[J]. Energies, 2019, 12(19): 3770. doi: 10.3390/en12193770
    [12] 杨永刚, 杜云超, 梅元贵. 单列高速列车通过隧道空气阻力特性数值模拟研究[J]. 铁道科学与工程学报, 2018, 15(11): 2755–2763. doi: 10.19713/j.cnki.43-1423/u.2018.11.005

    YANG Y G, DU Y C, MEI Y G. Numerical simulation of aerodynamic drag of single high-speed train passing through a tunnel[J]. Journal of Railway Science and Engineering, 2018, 15(11): 2755–2763. doi: 10.19713/j.cnki.43-1423/u.2018.11.005
    [13] ZHOU P, LI T, ZHAO C F, et al. Numerical study on the flow field characteristics of the new high-speed maglev train in open air[J]. Journal of Zhejiang University-SCIENCE A, 2020, 21(5): 366–381. doi: 10.1631/jzus.a1900412
    [14] 罗宇豪, 池茂儒, 吴兴文, 等. 新型中低速磁浮车辆振动传递特性研究[J]. 科学技术与工程, 2022, 22(20): 8848–8855. doi: 10.3969/j.issn.1671-1815.2022.20.035

    LUO Y H, CHI M R, WU X W, et al. Vibration transmission characteristics of new medium-low speed magnetic levitation vehicle[J]. Science Technology and Engineering, 2022, 22(20): 8848–8855. doi: 10.3969/j.issn.1671-1815.2022.20.035
    [15] 陆海英, 韩霄翰, 李忠继, 等. 中低速磁浮系统起浮阶段的振动特性分析[J]. 中国机械工程, 2019, 30(3): 318–324. doi: 10.3969/j.issn.1004-132X.2019.03.011

    LU H Y, HAN X H, LI Z J, et al. Analysis of vibration characteristics of low-medium speed maglev levitation systems in lifting stages[J]. China Mechanical Engineering, 2019, 30(3): 318–324. doi: 10.3969/j.issn.1004-132X.2019.03.011
    [16] 刘耀宗, 邓文熙, 龚朴. 低速磁浮列车单悬浮架机电控制建模及动力学特性研究[J]. 铁道学报, 2014, 36(9): 39–43. doi: 10.3969/j.issn.1001-8360.2014.09.08

    LIU Y Z, DENG W X, GONG P. Dynamics-control modeling and analysis for bogie of low-speed maglev train[J]. Journal of the China Railway Society, 2014, 36(9): 39–43. doi: 10.3969/j.issn.1001-8360.2014.09.08
    [17] 赵春霞. EMS型高速磁浮列车导向动力学研究[D]. 长沙: 国防科学技术大学, 2014.

    ZHAO C X. Research on guidance dynamics of EMS high-speed maglev train[D]. Changsha: National University of Defense Technology, 2014.
    [18] 舒瑶, 蒋忠城, 佟来生, 等. 横风荷载下电磁悬浮EMS型磁浮车辆动态响应特性分析[J]. 城市轨道交通研究, 2021, 24(12): 38–42. doi: 10.16037/j.1007-869x.2021.12.008

    SHU Y, JIANG Z C, TONG L S, et al. Dynamic response characteristics analysis of EMS maglev vehicle under cross wind loads[J]. Urban Mass Transit, 2021, 24(12): 38–42. doi: 10.16037/j.1007-869x.2021.12.008
    [19] WU H, ZENG X H, GAO D G. Periodic response and stability of a maglev system with delayed feedback control under aerodynamic lift[J]. International Journal of Structural Stability and Dynamics, 2021, 21(03): 2150040. doi: 10.1142/S0219455421500401
    [20] WU H, ZENG X H, YU Y. Motion stability of high-speed maglev systems in consideration of aerodynamic effects: a study of a single magnetic suspension system[J]. Acta Mechanica Sinica, 2017, 33(6): 1084–1094. doi: 10.1007/s10409-017-0698-z
    [21] LI M S, LEI B, LIN G B, et al. Field measurement of passing pressure and train induced airflow speed on high speed maglev vehicles[J]. Acta Aerodynamica Sinica, 2006, 24(2): 209–212. doi: 10.3969/j.issn.0258-1825.2006.02.013
    [22] 李田, 张继业, 张卫华. 横风下车辆-轨道耦合动力学性能[J]. 交通运输工程学报, 2011, 11(5): 55–60. doi: 10.19818/j.cnki.1671-1637.2011.05.009

    LI T, ZHANG J Y, ZHANG W H. Coupling dynamics performance of vehicle-track under cross wind[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 55–60. doi: 10.19818/j.cnki.1671-1637.2011.05.009
  • 加载中
图(25) / 表(3)
计量
  • 文章访问数:  149
  • HTML全文浏览量:  52
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 修回日期:  2023-01-24
  • 录用日期:  2023-02-20
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日