留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直升机“沙盲”现象研究进展

张卫国 谭剑锋 刘亚奎 杨仕鹏 王畅

张卫国, 谭剑锋, 刘亚奎, 等. 直升机“沙盲”现象研究进展[J]. 实验流体力学, 2023, 37(5): 56-75 doi: 10.11729/syltlx20220112
引用本文: 张卫国, 谭剑锋, 刘亚奎, 等. 直升机“沙盲”现象研究进展[J]. 实验流体力学, 2023, 37(5): 56-75 doi: 10.11729/syltlx20220112
ZHANG W G, TAN J F, LIU Y K, et al. Advances on helicopter brownout[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 56-75 doi: 10.11729/syltlx20220112
Citation: ZHANG W G, TAN J F, LIU Y K, et al. Advances on helicopter brownout[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 56-75 doi: 10.11729/syltlx20220112

直升机“沙盲”现象研究进展

doi: 10.11729/syltlx20220112
详细信息
    作者简介:

    张卫国:(1975—),男,山东兖州人,博士,研究员。研究方向:直升机空气动力学。通信地址:四川省绵阳市涪城区二环路南段6号13信箱(621000)。E-mail:zwglxy@163.com

    通讯作者:

    E-mail:jianfengtan@njtech.edu.cn

  • 中图分类号: V211.79

Advances on helicopter brownout

  • 摘要: 直升机近地飞行时,旋翼近地面干扰诱发非定常流动,推动地面沙尘扬起,形成“沙盲”现象,严重威胁直升机飞行安全,针对“沙盲”现象开展气动基础问题研究非常重要。本文从直升机“沙盲”计算方法、试验方法、形成机理、抑制方法等4个角度介绍直升机“沙盲”现象相关研究进展。综合相关研究成果可以发现:耦合涡方法(或CFD方法)和拉格朗日沙粒跟踪方法能够实现沙云轮廓和“沙盲”现象模拟,但尚需进一步体现复杂沙床表面、脉动湍流及沙粒迁移、聚集、起跳和扬起等关键因素;基于高速PIV和相机搭建的“沙盲”试验系统能够获得沙云形态数据,但仍需进一步研究沙云两相流测试技术和沙云空间浓度测试技术,深入探索沙粒驱动机制和“沙盲”演化机理,以及能够有效抑制“沙盲”现象的方法和技术途径。
  • 图  1  V-22“鱼鹰”倾转旋翼机“沙盲”现象

    Figure  1.  The brownout phenomenon of V-22 Osprey tiltrotor

    图  2  “沙盲”现象引发事故统计

    Figure  2.  Statistic on accidents caused by brownout

    图  3  非战斗损毁直升机统计数据[3]

    Figure  3.  Statistic on non-combat damaged helicopters[3]

    图  4  基于源或汇的地面镜面方法[6]

    Figure  4.  Surface mirror method based on source or sink[6]

    图  5  基于圆柱涡面的尾迹效应模型[8]

    Figure  5.  Wake effect model based on cylindrical vortex surface[8]

    图  6  基于动量理论和射流的尾流模型[11]

    Figure  6.  Wake model based on momentum theory and jet flow[11]

    图  7  CHARM软件的地面镜面模型[14]

    Figure  7.  Ground mirror model for the software of CHARM[14]

    图  8  ADPANEL的地面面元模型[17]

    Figure  8.  Ground surface element model of ADPANEL[17]

    图  9  直升机地面镜像模型[20]

    Figure  9.  Ground mirror model of Helicopter[20]

    图  10  黏性地面模型[23]

    Figure  10.  Model of viscous ground[23]

    图  11  OVERTURNS软件旋翼近地面干扰流场网格体系[31]

    Figure  11.  Grid system of rotor near ground interference flow field generated by software OVERTURNS [31]

    图  12  采用Helios软件计算的旋翼近地面干扰流场[35]

    Figure  12.  Interference flow field of rotor near ground resolved by Helios[35]

    图  13  LDTRAN模型[15]

    Figure  13.  LDTRAN Model[15]

    图  14  ADPANEL-PTM[17]

    Figure  14.  ADPANEL-PTM[17]

    图  15  基于沙粒输运方程的沙粒动力学模型[43]

    Figure  15.  Model of sand particle dynamics based on sand particle transport equation[43]

    图  16  沙粒DEM模型[47-49]

    Figure  16.  Sand particle DEM model[47-49]

    图  17  沙粒连续场模型[26]

    Figure  17.  Sand particle continuous field model[26]

    图  18  CFD与EDEM耦合模型[53]

    Figure  18.  Coupled model of CFD and EDEM[53]

    图  19  直升机“沙云”中的沙粒直径分布[53]

    Figure  19.  Distribution of sand radius in helicopter dust cloud[53]

    图  20  直升机驾驶舱视野区域

    Figure  20.  Pilot’s view of helicopter

    图  21  飞行员视野坐标

    Figure  21.  Frame of pilot’s view

    图  22  旋翼近地面干扰流场的风洞试验[57]

    Figure  22.  Wind tunnel test of interference flow field of rotor near ground[57]

    图  23  旋翼近地面干扰的宏观流动[57]

    Figure  23.  Macroscopic flow of rotor and ground interference[57]

    图  24  旋翼近地面干扰流场结构[58]

    Figure  24.  The structure of rotor and ground interference flow field[58]

    图  25  悬停状态下的旋翼近地面干扰流场试验研究[5]

    Figure  25.  Experimental studies of interference flow field of hovering rotor and ground[5]

    图  26  桨尖涡冲击地面产生的次生涡结构和分离气泡[60]

    Figure  26.  Secondary vortex structure and separation bubble generated by the hitting process of blade tip vortex and ground[60]

    图  27  H–21直升机“沙盲”试验[61]

    Figure  27.  Experiment of brownout with H–21 helicopter[61]

    图  28  沙盲测试系统[37]

    Figure  28.  Test system for brownout[37]

    图  29  两相流测试系统[63]

    Figure  29.  Test system of two phase flow[63]

    图  30  直升机“沙盲”旋翼模型试验测量[64]

    Figure  30.  Experimental measurement of model of helicopter brownout with rotor[64]

    图  31  沙云中不同粒径沙粒的浓度及质量密度[66]

    Figure  31.  Concentration and mass density of sand particles of different particle size scales in dust clouds[66]

    图  32  EH–60L直升机的沙盲飞行试验测试系统[68]

    Figure  32.  Flight test system of EH–60L helicopter brownout[68]

    图  33  沙粒扬起过程[64]

    Figure  33.  Lifting process of dust particles[64]

    图  34  “沙盲”现象的流场与沙尘特性示意图[54]

    Figure  34.  A schematic of characteristics of flow field and sand dust in brownout phenomenon[54]

    图  35  基于平均下洗速度与尾流强度衡量直升机沙盲严重性[69]

    Figure  35.  Levels of brownout for different types of helicopters based on the average downwash speed and wake intensity[69]

    图  36  矩形桨叶与前突后掠型桨尖桨叶的桨尖涡结构对比[36]

    Figure  36.  Comparison of tip vortex structure between rectangular blade and swept blade[36]

    图  37  UH–60直升机基准旋翼和优化旋翼在下降飞行状态下形成的沙云特性[70]

    Figure  37.  Sand cloud characteristics in descending flight for UH–60 benchmark rotor and optimized rotor[70]

    图  38  EH–101直升机旋翼与沙云抑制效果[71]

    Figure  38.  EH–101 helicopter rotor and suppression effect of dust cloud[71]

    图  39  英国S–61直升机换装的旋翼与沙盲云[70]

    Figure  39.  Rebladed British S–61 helicopter and brownout cloud[70]

    图  40  直升机在低能见度环境中的降落程序示意[73]

    Figure  40.  Helicopter landing procedure in degraded visual environ-ments[73]

    图  41  EH–60L直升机“沙盲”预警和辅助系统[75]

    Figure  41.  Early warning auxiliary system of brownout in EH–60L helicopter[75]

  • [1] Acquisition and Technology Programs Task Force (ATP TF). Department of defense aviation safety technologies report[R]. Washington, D. C. : Defense Safety Oversight Council, Office of the Under Secretary of Defense for Personnel and Readiness, 2009: 22-23.
    [2] BROWER M. Preventing brownout[J]. Special Operations Technology, 2004, 2(4): 1.
    [3] U. S. Department of Defense. Study of rotorcraft surviva-bility, summary briefing[R]. 2009.
    [4] ANDERSON L, DOTY P, GRIEGO M, et al. Solutions analysis for helicopter brownout[C]//Proc of the 9th Annual NDIA Systems Engineering Conference. 2006.
    [5] MILLUZZO J I, LEISHMAN J G. Vortical sheet behavior in the wake of a rotor in ground effect[J]. AIAA Journal, 2016, 55(1): 24. doi: 10.2514/1.J054498
    [6] BETZ A. The ground effect on lifting propellers[R]. NACA-TM-836, 1937.
    [7] CHEESEMAN I C, BENNETT W E. The effect of the ground on a helicopter rotor in forward flight[R]. A. R. C. Technical Report, R. & M. No. 3021, 1957.
    [8] ROSSOW V J. Effect of ground and/or ceiling planes on thrust of rotors in hover[R]. NASA-TM-86754, 1985.
    [9] 何承健, 高正. 贴地飞行的旋翼尾迹研究[J]. 航空学报, 1986, 7(4): 325–331. doi: 10.3321/j.issn:1000-6893.1986.04.001

    HE C J, GAO Z. A study of the rotor wake in nap of the earth[J]. Acta Aeronautica et Astronautica Sinica, 1986, 7(4): 325–331. doi: 10.3321/j.issn:1000-6893.1986.04.001
    [10] DuWALDT F A. Wakes of lifting propellers (rotors) in-ground-effect[M]. Washington, D. C. : Cornell Aeronautical Laboratory, 1966.
    [11] FERGUSON S W. Rotorwash analysis handbook, volume I: Development and analysis[R]. Federal Aviation Admini-stration, Technical Report DOT/FAA/RD-93/31, 1994.
    [12] PRESTON J R, TROUTMAN S, KEEN E, et al. Rotorwash operational footprint modeling[R]. U. S. Army RDECOM Technical Report RDMRAF-14-02, 2014. doi: 10.21236/ada607614
    [13] WACHSPRESS D A, QUACKENBUSH T R, BOSCHITSCH A H. First-principles free-vortex wake analysis for helicopters and tiltrotors[C]//Proc of the 59th Annual Forum of the American Helicopter Society. 2003.
    [14] WACHSPRESS D A, WHITEHOUSE G R, KELLER J D, et al. A high fidelity brownout model for real-time flight simulations and trainers[C]//Proc of the 65th Annual Forum of the American Helicopter Society. 2009: 1281-1304.
    [15] KELLER J D, WHITEHOUSE G R, WACHSPRESS D A, et al. A physics-based model of rotorcraft brownout for flight simulation applications[C]//Proc of the 62nd Annual Forum of the American Helicopter Society. 2006.
    [16] 辛冀, 李攀, 陈仁良. 地面效应中悬停旋翼的自由尾迹计算[J]. 航空学报, 2012, 33(12): 2161–2170.

    XIN J, LI P, CHEN R L. Free-wake analysis of hovering rotor in ground effect[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2161–2170.
    [17] D'ANDREA A. Numerical analysis of unsteady vortical flows generated by a rotorcraft operating on ground: a first assessment of helicopter brownout[C]//Proc of the 65th Annual Forum of the American Helicopter Society. 2009.
    [18] PHILLIPS C, BROWN R E. Eulerian simulation of the fluid dynamics of helicopter brownout[J]. Journal of Aircraft, 2009, 46(4): 1416–1429. doi: 10.2514/1.41999
    [19] GRIFFITHS D A, ANANTHAN S, LEISHMAN J G. Predictions of rotor performance in ground effect using a free-vortex wake model[J]. Journal of the American Helicopter Society, 2005, 50(4): 302–314. doi: 10.4050/1.3092867
    [20] SYAL M, LEISHMAN J G. Modeling of bombardment ejections in the rotorcraft brownout problem[J]. AIAA Journal, 2013, 51(4): 849–866. doi: 10.2514/1.J051761
    [21] ZHAO J G, HE C J. Physics-based modeling of viscous ground effect for rotorcraft applications[J]. Journal of the American Helicopter Society, 2015, 60(3): 1–13. doi: 10.4050/jahs.60.032006
    [22] TAN J F, SUN Y M, BARAKOS G N. Vortex approach for downwash and outwash of tandem rotors in ground effect[J]. Journal of Aircraft, 2018, 55(6): 2491–2509. doi: 10.2514/1.C034740
    [23] 谭剑锋, 周天熠, 王畅, 等. 旋翼地面效应的气动建模与特性[J]. 航空学报, 2019, 40(6): 106–116.

    TAN J F, ZHOU T Y, WANG C, et al. Aerodynamic model and characteristics of rotor in ground effect[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 106–116.
    [24] TAN J F, CAI J G, BARAKOS G N, et al. Computational study on the aerodynamic interference between tandem rotors and nearby obstacles[J]. Journal of Aircraft, 2020, 57(3): 456–468. doi: 10.2514/1.c035629
    [25] RYERSON C, HAEHNEL R, KOENIG G, et al. Visibility enhancement in rotorwash clouds[C]//Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005: 263. doi: 10.2514/6.2005-263
    [26] WENREN Y H, WALTER J, FAN M, et al. Vorticity confinement and advanced rendering to compute and visualize complex flows[C]//Proc of the 44th AIAA Aerospace Sciences Meeting and Exhibit. 2006. doi: 10.2514/6.2006-945
    [27] HAEHNEL R B, MOULTON M A, WENREN W, et al. A model to simulate rotorcraft-induced brownout[C]//Proc of the 64th Annual Forum of the American Helicopter Society. 2008.
    [28] WENREN Y, CHITTA S, WACHSPRESS D, et al. A rotorcraft aerodynamics CFD solution method based on vorticity confinement[C]//Proc of the 66th Annual Forum of the American Helicopter Society. 2010.
    [29] THOMAS S, LAKSHMINARAYAN V K, KALRA T S, et al. Eulerian-Lagrangian analysis of cloud evolution using CFD coupled with a sediment tracking algorithm[C]//Proc of the 67th Annual Forum of the American Helicopter Society. 2011.
    [30] THOMAS S, AMIRAUX M, BAEDER J D. GPU-accelerated FVM-RANS hybrid solver for simulating two-phase flow beneath a hovering rotor[C]//Proc of the 69th Annual Forum of the American Helicopter Society. 2013.
    [31] LAKSHMINARAYAN V K, KALRA T S, BAEDER J D. Detailed computational investigation of a hovering microscale rotor in ground effect[J]. AIAA Journal, 2013, 51(4): 893–909. doi: 10.2514/1.J051789
    [32] 叶靓, 招启军, 徐国华. 基于非结构嵌套网格方法的旋翼地面效应数值模拟[J]. 航空学报, 2009, 30(5): 780–786. doi: 10.3321/j.issn:1000-6893.2009.05.002

    YE L, ZHAO Q J, XU G H. Numerical simulation on flowfield of rotor in ground effect based on unstructured embedded grid method[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(5): 780–786. doi: 10.3321/j.issn:1000-6893.2009.05.002
    [33] 朱明勇, 招启军, 王博. 基于CFD和混合配平算法的直升机旋翼地面效应模拟[J]. 航空学报, 2016, 37(8): 2539–2551. doi: 10.7527/S1000-6893.2015.0335

    ZHU M Y, ZHAO Q J, WANG B. Simulation of helicopter rotor in ground effect based on CFD method and hybrid trim algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2539–2551. doi: 10.7527/S1000-6893.2015.0335
    [34] RAMASAMY M, POTSDAM M, YAMAUCHI G K. Measurements to understand the flow mechanisms contributing to tandem-rotor outwash[C]//Proc of the AHS 71st Annual Forum. 2015: 612-647.
    [35] RAMASAMY M, YAMAUCHI G. Using model-scale tandem-rotor measurements in ground effect to understand full-scale CH-47D outwash[J]. Journal of the American Helicopter Society, 2017, 62(1): 1–14. doi: 10.4050/jahs.62.012004
    [36] ROVERE F, STEIJL R, BARAKOS G N. CFD Analysis of a micro rotor in ground effect[C]//Proc of the AIAA Scitech 2020 Forum. 2020. doi: 10.2514/6.2020-1793
    [37] WHITEHOUSE G R, WACHSPRESS D A, QUACKENBUSH T R, et al. Exploring aerodynamic methods for mitigating brownout[C]//Proc of the 65th Annual Forum of the American Helicopter Society. 2009.
    [38] D'ANDREA A, SCORCELLETTI F. Enhanced numerical simulations of helicopter landing maneuvers in brownout conditions[C]//Proc of the 66th Annual Forum of the American Helicopter Society. 2010.
    [39] PHILLIPS C, KIM H W, BROWN R E. The flow physics of helicopter brownout[C]//Proc of the 66th Annual Forum of the American Helicopter Society. 2010.
    [40] JOHNSON B, LEISHMAN J G, SYDNEY A. Investigation of sediment entrainment in brownout using high-speed particle image velocimetry[C]//Proc of the 65th Annual Forum of the American Helicopter Society. 2009.
    [41] SYAL M, GOVINDARAJAN B, LEISHMAN J G. Mesoscale sediment tracking methodology to analyze brownout cloud developments[C]//Proc of the 66th Annual Forum of the American Helicopter Society. 2010.
    [42] SYAL M, LEISHMAN J G. Predictions of brownout dust clouds compared to photogrammetry measurements[J]. Journal of the American Helicopter Society, 2013, 58(2): 1–18. doi: 10.4050/jahs.58.022001
    [43] GOVINDARAJAN B M, LEISHMAN J G. Predictions of rotor and rotor/airframe configurational effects on brownout dust clouds[J]. Journal of Aircraft, 2015, 53(2): 545–560. doi: 10.2514/1.C033447
    [44] SHAO Y, RAUPACH M R, FINDLATER P A. Effect of saltation bombardment on the entrainment of dust by wind[J]. Journal of Geophysical Research Atmospheres, 1993, 98(D7): 12719–12726. doi: 10.1029/93JD00396
    [45] GOVINDARAJAN B, LEISHMAN J G, GUMEROV N A. Evaluation of particle clustering algorithms in the prediction of brownout dust clouds[C]//Proc of the 67th Annual Forum of the American Helicopter Society. 2011: 325-347.
    [46] HU Q, GUMEROV N A, SYAL M, et al. Toward improved aeromechanics simulation using recent advancements in scientific computing[C]//Proc of the 67th Annual Forum of the American Helicopter Society. 2011: 2105-2119.
    [47] TAN J F, GAO J E, BARAKOS G N, et al. Novel approach to helicopter brownout based on vortex and discrete element methods[J]. Aerospace Science and Technology, 2021, 116: 106839. doi: 10.1016/j.ast.2021.106839
    [48] 谭剑锋, 何龙, 于领军, 等. 基于黏性涡粒子/沙粒DEM的直升机沙盲建模[J]. 航空学报, 2022, 43(8): 351–361. doi: 10.7527/sl000-6893.2021.25536

    TAN J F, HE L, YU L J, et al. Helicopter brownout modeling based on viscous vortex particle and sand particle DEM[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 351–361. doi: 10.7527/sl000-6893.2021.25536
    [49] TAN J F, YON T, HE L, et al. Accelerated method of helicopter brownout with particle-particle collisions[J]. Aerospace Science and Technology, 2022, 124: 107511. doi: 10.1016/j.ast.2022.107511
    [50] 谭剑锋, 韩水, 王畅, 等. 基于DEM的直升机沙盲加速计算方法[J]. 北京航空航天大学学报, 2023, 49(6): 1352–1361. doi: 10.13700/j.bh.1001-5965.2021.0450

    TAN J F, HAN S, WANG C, et al. Accelerated computational method of helicopter brownout based on DEM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(6): 1352–1361. doi: 10.13700/j.bh.1001-5965.2021.0450
    [51] KUTZ B M, GUNTHER T, RUMPF A, et al. Numerical examination of a model rotor in brownout conditions[C]//Proc of the 70th Annual Forum of the American Helicopter Society. 2014: 2450-2461.
    [52] BARAKOS G N, FITZGIBBON T, KUSYUMOV A N, et al. CFD simulation of helicopter rotor flow based on unsteady actuator disk model[J]. Chinese Journal of Aeronautics, 2020, 33(9): 2313–2328. doi: 10.1016/j.cja.2020.03.021
    [53] HU J P, XU G H, SHI Y J, et al. A numerical simulation investigation of the influence of rotor wake on sediment particles by computational fluid dynamics coupling discrete element method[J]. Aerospace Science and Technology, 2020, 105: 106046. doi: 10.1016/j.ast.2020.106046
    [54] 胡健平, 徐国华, 史勇杰, 等. 基于CFD-DEM耦合数值模拟的全尺寸直升机沙盲形成机理[J]. 航空学报, 2020, 41(3): 154–168.

    HU J P, XU G H, SHI Y J, et al. Formation mechanism of brownout in full-scale helicopter based on CFD-DEM couplings numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 154–168.
    [55] PORCÙ R, MIGLIO E, PAROLINI N, et al. HPC simulations of brownout: A noninteracting particles dynamic model[J]. The International Journal of High Performance Computing Applications, 2020, 34(3): 267–281. doi: 10.1177/1094342020905971
    [56] TAN J F, GE Y Y, ZHANG W G, et al. Numerical study on helicopter brownout with crosswind[J]. Aerospace Science and Technology, 2022, 131: 107965. doi: 10.1016/j.ast.2022.107965
    [57] SAIJO T, GANESH B, HUANG A, et al. Development of unsteadiness in a rotor wake in ground effect[C]//Proc of the 21st AIAA Applied Aerodynamics Conference. 2003. doi: 10.2514/6.2003-3519
    [58] NATHAN N D. The rotor wake in ground effect and its investigation in a wind tunnel[D]. Scotland, UK: University of Glasgow, 2010.
    [59] LEE T, LEISHMAN J G, RAMASAMY M. Fluid dynamics of interacting blade tip vortices with a ground plane[C]//Proc of the 64th Annual Forum of the American Helicopter Society. 2008. doi: 10.4050/jahs.55.022005
    [60] BRADLEY J, LEISHMAN J G, SYDNEY A, et al. Investigation of sediment entrainment in brownout using high-speed particle image velocimetry[C]//Proc of the 65th Annual Forum of the American Helicopter Society. 2009.
    [61] RODGERS S J. Evaluation of the gust cloud generated by helicopter rotor downwash[R]. U. S. Army Aviation Materiel Laboratories Technical Report, 1968.
    [62] NATHAN N D, GREEN R B. Measurements of a rotor flow in ground effect and visualization of the brown-out phenomenon[C]//Proc of the 64th Annual Forum of the American Helicopter Society. 2008.
    [63] SYDNEY A, LEISHMAN J G. Measurements of rotor/airframe interactions in ground effect over a sediment bed[C]//Proc of the 69th Annual Forum of the American Helicopter Society. 2013.
    [64] SYDNEY A, BAHARANI A, LEISHMAN J G. Under-standing brownout using near-wall dual-phase flow measure-ments[C]//Proc of the 67th Annual Forum of the American Helicopter Society. 2011.
    [65] SYDNEY A, LEISHMAN J G. Measurements of the plume-like three-dimensionality of rotor-induced dust fields[C]//Proc of the 70th Annual Forum of the American Helicopter Society. 2014.
    [66] COWHERD C, Jr. Sandblaster 2: support of see-through technologies for particulate brownout[R]. Defence Advanced Research Projects Agency (DARPA), Technical Report 110565, 2007.
    [67] TANNER P E. Photogrammetric characterization of a brownout cloud[C]//Proc of the 67th Annual Forum of the American Helicopter Society. 2011: 3039-3055.
    [68] WONG O D, TANNER P E. Photogrammetric measure-ments of an EH-60L brownout cloud[J]. Journal of the American Helicopter Society, 2016, 61(1): 1–10. doi: 10.4050/jahs.61.012003
    [69] SPOLDI S, ENGEL D, FAYNBERGY A, et al. CH-53K control laws: improved safety and performance in the degraded visual environment[C]//Proc of the Vertical Flight Society‘s 76th Annual Forum & Technology Display, 2020. doi: 10.4050/f-0076-2020-16390
    [70] WHITEHOUSE G R, WACHSPRESS D A, QUACKENBUSH T R. Aerodynamic design of helicopter rotors for reduced brownout[C]//Proc of the International Powered Lift Conference Proceedings. 2010.
    [71] STAFF A H S. British merlin in comba operations: lessons learned[C]//Vertiflite, Fall 2008, American Helicopter Society. 2008.
    [72] SLADE K. Sharp new blades improve sea kings[R/OL]. UK Ministry of Defense. 2008. http://www.mod.uk/NR/rdonlyres/C5EA5D7B-D39C-49EE-ADE0-F721525ECA1D/0/desider_04_aug08.pdf.
    [73] PRIOT A-E, ALBERY W. Rotary-wing brownout mitiga-tion: technologies and training[R]. North Atlantic Treaty Organisation, RTO-TR-HFM-162, 2012.
    [74] HARRINGTON W, BRADDOM S SAVAGE J, et al. 3D-LZ brownout landing solution[C]//Proc of the 66th Annual Forum of the American Helicopter Society. 2010.
    [75] SZOBOSZLAY Z P, FUJIZAWA B T, OTT C R, et al. 3D-LZ flight test of 2013: landing an EH-60L helicopter in a brownout Degraded Visual Environment[C]//Proc of the 70th Annual Forum of the American Helicopter Society. 2014. doi: 10.13140/2.1.4978.7525
    [76] TURPIN T S, SYKORA B, NEISWANDER G M, et al. Brownout landing aid system technology (BLAST)[C]//Proc of the 66th Annual Forum of the American Helicopter Society. 2010.
    [77] NEISWANDER G M. Improving deceleration guidance for rotorcraft brownout landing[C]//Proc of the 67th Annual Forum of the American Helicopter Society. 2011.
    [78] ROY G, ROY S, GAO X Y. Helicopter flight test of the Obscurant Penetrating Autosynchronous Lidar (OPAL) in degraded visual environments: part II – see-through capabi-lity assessment[C]//Proc of the AHS 70th Annual Forum. 2014.
    [79] SZOBOSZLAY Z, DAVIS B, FUJIZAWA B T, et al. Degraded Visual Environment Mitigation (DVE-M) Program, Yuma 2016 flight trials[C]//Proc of the American Helicopter Society 73rd Annual Forum & Technology Display, 2017.
    [80] MILLER J D, GODFROY-COOPER M, SZOBOSZLAY Z P. Degraded Visual Environment Mitigation (DVE-M) Program, bumper Radar obstacle cueing flight trials 2020[C]//Proc of the Vertical Flight Society’s 77th Annual Forum and Technology Display. 2021. doi: 10.4050/F-0077-2021-16747
  • 加载中
图(41)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  106
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 修回日期:  2023-02-02
  • 录用日期:  2023-04-03
  • 网络出版日期:  2023-10-23
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日