留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于舒适性的高速磁浮铁路单线隧道最不利隧道长度分布特征研究

杜迎春 梅元贵

杜迎春, 梅元贵. 基于舒适性的高速磁浮铁路单线隧道最不利隧道长度分布特征研究[J]. 实验流体力学, 2023, 37(1): 44-52 doi: 10.11729/syltlx20220120
引用本文: 杜迎春, 梅元贵. 基于舒适性的高速磁浮铁路单线隧道最不利隧道长度分布特征研究[J]. 实验流体力学, 2023, 37(1): 44-52 doi: 10.11729/syltlx20220120
DU Y C, MEI Y G. Study on the critical tunnel length distribution characteristics of high-speed maglev railway single-track tunnel based on pressure comfort[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 44-52 doi: 10.11729/syltlx20220120
Citation: DU Y C, MEI Y G. Study on the critical tunnel length distribution characteristics of high-speed maglev railway single-track tunnel based on pressure comfort[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 44-52 doi: 10.11729/syltlx20220120

基于舒适性的高速磁浮铁路单线隧道最不利隧道长度分布特征研究

doi: 10.11729/syltlx20220120
详细信息
    作者简介:

    杜迎春:(1998—),男,甘肃白银人,硕士研究生。研究方向:列车空气动力学。通信地址:甘肃省兰州市安宁区安宁西路88号兰州交通大学甘肃省轨道交通力学应用工程实验室(730070)。E-mail:w4xbaby@163.com

    通讯作者:

    E-mail:meiyuangui@163.com

  • 中图分类号: U237;V211.3

Study on the critical tunnel length distribution characteristics of high-speed maglev railway single-track tunnel based on pressure comfort

  • 摘要: 列车在不同长度隧道中高速行驶,会产生不同程度的压力波动,从而引起乘客不同程度的耳感舒适性问题。采用一维可压缩非定常不等熵流动模型的特征线法和时间常数法动态气密指数模型,研究了单列高速磁浮列车通过隧道时的车外压力波和两种动态气密指数下的车内压力变化特征,完善了基于压力舒适性标准的高速磁浮铁路单线最不利隧道长度的概念,进行了列车速度和列车动态气密指数对最不利隧道长度影响规律的研究。研究发现:在基于车外压力最大负压值的最不利隧道长度下,车内压力最大负压值较小。车内每1、3、10和60 s内最大压力变化量最大值随隧道长度增大呈先增大后减小的特征,即存在舒适性约束条件下的最不利隧道长度。列车速度不同,该最不利隧道长度不同。除车内每10 s压力限值条件下外,动态气密指数不同,最不利隧道长度近似。动态气密指数83 s、速度600 km/h的单列磁浮列车通过截面积为100 m2的隧道时,满足UIC660舒适性标准的最不利隧道长度为10~12 km。本文成果对研究基于舒适性标准的隧道净空面积和列车气密性,以及进一步完善基于隧道压力波效应的轨道交通最不利隧道长度理论体系有较好的参考价值。
  • 图  1  隧道内测点压力时间历程曲线

    Figure  1.  Pressure time history curve of measuring point in tunnel

    图  2  高速磁浮单列车隧道压力波

    Figure  2.  Tunnel pressure wave of high-speed maglev single train

    图  3  高速磁浮单列车内外压力对比

    Figure  3.  Comparison of internal and external pressure of high-speed maglev single train

    图  4  不同隧道长度下高速磁浮单列车内外压力对比

    Figure  4.  Comparison of internal and external pressure of high-speed maglev single train under different tunnel lengths

    图  5  高速磁浮头车车内不同时间间隔最大压力变化量时间历程曲线

    Figure  5.  Time course curve of maximum pressure variation at different time intervals in high speed maglev head car

    图  6  隧道长度对车内每3 s和任意时间内最大压力变化量最大值的影响

    Figure  6.  The influence of tunnel length on the maximum variation of the maximum pressure inside the vehicle every 3 s and any time

    图  7  列车速度对不同隧道长度下不同时间间隔车内最大压力变化量最大值的影响

    Figure  7.  Influence of train speed on the maximum variation of the maximum pressure inside the vehicle at different time intervals under different tunnel lengths

    图  8  动态气密指数对不同隧道长度下不同时间间隔车内最大压力变化量最大值的影响

    Figure  8.  Influence of dynamic pressure tightness index on maximum pressure variation inside the train at different time intervals under different tunnel lengths

    表  1  不同列车速度下最不利隧道长度分布

    Table  1.   The critical tunnel length distribution under different speeds of train

    vtr/(km·h−1)每1 s限值条件下/km每3 s限值条件下/km每10 s限值条件下/km每60 s限值条件下/km
    4000.5~1.20.6~1.51.5~2.57.0~9.0
    5000.5~0.80.9~1.52.0~2.59.0~10.0
    6000.7~1.01.2~2.02.510.0~12.0
    下载: 导出CSV

    表  2  不同动态气密指数下最不利隧道长度分布

    Table  2.   The critical tunnel length distribution under different dynamic pressure tightness index

    τ/s每1 s限值条件下/km每3 s限值条件下/km每10 s限值条件下/km每60 s限值条件下/km
    830.7~1.01.2~2.02.510.0~12.0
    1000.7~1.01.2~2.02.5~3.010.0~12.0
    1200.7~1.11.2~2.02.5~4.010.0~12.0
    下载: 导出CSV
  • [1] PETERS J L. Aerodynamics of very high speed trains and maglev vehicles: state of art and future potential[J]. International Journal of Vehicle Design, 1983, SP3: 308–341.
    [2] SCHETZ J A. Aerodynamics of high-speed trains[J]. Annual Review of Fluid Mechanics, 2001, 33: 371–414. doi: 10.1146/annurev.fluid.33.1.371
    [3] TIELKES Th. Aerodynamic Aspects of Maglev Systems[C]// Proc of MAGLEV' 2006: The 19th international conference on magnetically levitated systems and linear drives. 2006.
    [4] BERLITZ T, WORMSTALL-REITSCHUSTER H J, TIELKES Th, et al. Pressure comfort–meeting future demands for high-speed trains[C]//Proceedings of the World Congress of Railway Research (WCRR). 2003.
    [5] 梅元贵, 周朝晖, 许建林. 高速铁路隧道空气动力学[M]. 北京: 科学出版社, 2009.

    MEI Y G, ZHOU C H, XU J L. Aerodynamics of high-speed railway tunnel[M]. Beijing: Science Press, 2009.
    [6] BAKER C J. A review of train aerodynamics Part 1 emdash Fundamentals[J]. Aeronautical Journal, 2014, 118(Mar.TN.1201): 201–228.
    [7] TIAN H Q. Review of research on high-speed railway aerodynamics in China[J]. Transportation Safety and Environment, 2019, 1(1): 1–21. doi: 10.1093/tse/tdz014
    [8] 韩运动, 姚松, 陈大伟, 等. 基于实车试验的高速列车隧道压力波影响因素[J]. 中南大学学报(自然科学版), 2017, 48(5): 1404–1412.

    HAN Y D, YAO S, CHEN D W, et al. Influential factors of tunnel pressure wave on high-speed train by real vehicle test[J]. Journal of Central South University (Science and Technology), 2017, 48(5): 1404–1412.
    [9] 王志钧, 梅元贵. 高速列车压力舒适性环境特征的实车试验研究[J]. 空气动力学学报, 2021, 39(5): 170–180. doi: 10.7638/kqdlxxb-2021.0248

    WANG Z J, MEI Y G. Field study of pressure comfort environment characteristics of high-speed train[J]. Acta Aerodynamica Sinica, 2021, 39(5): 170–180. doi: 10.7638/kqdlxxb-2021.0248
    [10] YANG Q S, SONG J H, YANG G W. A moving model rig with a scale ratio of 1/8 for high speed train aerodynamics[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 152: 50–58. doi: 10.1016/j.jweia.2016.03.002
    [11] 肖京平, 黄志祥, 陈立. 高速列车空气动力学研究技术综述[J]. 力学与实践, 2013, 35(2): 1–12. doi: 10.6052/1000-0879-13-063

    XIAO J, HUANG Z, CHEN L. Review of aerodynamic investigations for high speed train[J]. Mechanics in engineering, 2013, 35(2): 1–12. doi: 10.6052/1000-0879-13-063
    [12] 梅元贵, 张成玉, 周朝晖, 等. 单列高速列车通过特长隧道时耳感不适问题研究[J]. 机械工程学报, 2015, 51(14): 100–107.

    MEI Y G, ZHANG C Y, ZHOU C H, et al. Research on the aural discomfort when a single train passes through a super long tunnel[J]. Journal of Mechanical Engineering, 2015, 51(14): 100–107.
    [13] UIC. Measures to ensure the technical compability of high-speed trains: UIC CODE 660[S]. 2002.
    [14] 中国铁路总公司. 时速350公里中国标准动车组暂行技术条件: TJ/CL342-2014 [S]. 2014.
    [15] 山崎幹男, 若原敏裕, 永長隆昭, et al. 超高速鉄道トンネル内に生じる圧力変動評価[C]//土木学会論文集. 2003.
    [16] 梅元贵, 张志超, 杜健, 等. 高速磁浮单列车通过隧道时车外压力数值模拟研究[J]. 中国铁道科学, 2021, 42(6): 78–89.

    MEI Y G, ZHANG Z C, DU J, et al. Numerical simulation of external pressure caused by high-speed maglev single train passing tunnel[J]. China Railway Science, 2021, 42(6): 78–89.
    [17] 国家铁路局. 磁浮铁路技术标准(试行): TB10630-2019[S]. 北京: 中国铁道出版社有限公司, 2019.
    [18] REPUBLIC of BULGARIA GOVERNMENT. Railway applications-Aerodynamics - Part 5 Requirements and test procedures for aerodynamics in tunnels: EN 14067-5: 2006 + A1: 2010 [S/OL]. [2022-11-01]. https://knowledge.bsigroup.com/products/railway-applications-aerodynamics-requirements-and-test-procedures-for-aerodynamics-in-tunnels/standard.
    [19] 林洋, 何德华, 白夜, 等. 高速列车隧道交会最不利长度实车试验研究[J]. 铁道机车车辆, 2017, 37(6): 26–30. doi: 10.3969/j.issn.1008-7842.2017.06.06

    LIN Y, HE D H, BAI Y, et al. Vehicle test study on the most unfavorable intersection length of high-speed trains in the tunnel[J]. Railway Locomotive & Car, 2017, 37(6): 26–30. doi: 10.3969/j.issn.1008-7842.2017.06.06
    [20] 马瑶. 山区隧道条件高速列车车体气密性特征的数值模拟研究[D]. 兰州: 兰州交通大学, 2020.

    MA Y. Numerical simulation study on air-tightness characteristics of high speed trains in mountainous tunnel conditions[D]. Lanzhou: Lanzhou Jiatong University, 2020.
    [21] 史宪明, 曾宏飞, 杜云超, 等. 考虑空气动力学效应的城市轨道交通隧道设计方法: 以湖南凤凰中低速磁浮双线隧道为例[J]. 现代隧道技术, 2019, 56(S1): 81–86.

    SHI X M, ZENG H F, DU Y C, et al. Design method of urban rail transit tunnel clearance area in consideration of aerodynamic effects—case study of Fenghuang medium and low speed maglev double-line tunnels[J]. Modern Tunnelling Technology, 2019, 56(S1): 81–86.
    [22] 焦齐柱, 肖明清, 周俊超, 等. 基于乘员耳感舒适性的时速600 km磁悬浮单线隧道最优净空面积研究[J]. 铁道科学与工程学报, 2020, 17(12): 2993–3002.

    JIAO Q Z, XIAO M Q, ZHOU J C, et al. Study on the optimal clearance area of a single line maglev tunnel with a speed of 600 km/h based on the ear comfort of passengers[J]. Journal of Railway Science and Engineering, 2020, 17(12): 2993–3002.
    [23] 张芯茹. 高速磁浮隧道压力波特性及隧道净空面积研究[D]. 兰州: 兰州交通大学, 2020.

    ZHANG X R. Research on tunnel pressure wave characteristics and tunnel clearance area of high-speed maglev[D]. Lanzhou: Lanzhou Jiatong University, 2020.
    [24] 梅元贵, 赵汗冰, 陈大伟, 等. 时速600 km磁浮列车驶入隧道时初始压缩波特征的数值模拟[J]. 交通运输工程学报, 2020, 20(1): 120–131.

    MEI Y G, ZHAO H B, CHEN D W, et al. Numerical simulation of initial compression wave characteristics of 600 km·h-1 maglev train entering tunnel[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 120–131.
    [25] SIMA M. New unifying procedure for working with pressure tightness of rail passenger vehicles[C]//Proceedings of the 11th International symposium on the aerodynamics and ventilation of vehicle tunnels. 2003.
    [26] JOHNSON T. The Need for a Standardized Definition of a sealing Parameter [C]//Proc of Conference on Cost-Effectiveness of Presssure Sealed Coaches. 1999.
    [27] YANG M Z, ZHONG S, ZHANG L, et al. 600 km/h moving model rig for high-speed train aerodynamics[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 227: 105063. doi: 10.1016/j.jweia.2022.105063
    [28] 王建宇, 万晓燕, 吴剑. 隧道长度对瞬变压力的影响[J]. 现代隧道技术, 2008, 45(6): 1–4, 15. doi: 10.3969/j.issn.1009-6582.2008.06.001

    WANG J Y, WAN X Y, WU J. Influence of tunnel lengths upon air pressure fluctuation in high speed railway tunnels[J]. Modern Tunnelling Technology, 2008, 45(6): 1–4, 15. doi: 10.3969/j.issn.1009-6582.2008.06.001
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  3060
  • HTML全文浏览量:  118
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 修回日期:  2022-12-23
  • 录用日期:  2022-12-27
  • 网络出版日期:  2023-03-10
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日