留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速磁浮隧道扩大等截面斜切型缓冲结构减缓初始压缩波机理研究

马智豪 景雪蕾 杜迎春 梅元贵

马智豪, 景雪蕾, 杜迎春, 等. 高速磁浮隧道扩大等截面斜切型缓冲结构减缓初始压缩波机理研究[J]. 实验流体力学, 2023, 37(1): 100-112 doi: 10.11729/syltlx20220123
引用本文: 马智豪, 景雪蕾, 杜迎春, 等. 高速磁浮隧道扩大等截面斜切型缓冲结构减缓初始压缩波机理研究[J]. 实验流体力学, 2023, 37(1): 100-112 doi: 10.11729/syltlx20220123
MA Z H, JING X L, DU Y C, et al. Mechanism of expanded equal-section inclined hood to reduce initial compression wave by high-speed maglev passing through the tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 100-112 doi: 10.11729/syltlx20220123
Citation: MA Z H, JING X L, DU Y C, et al. Mechanism of expanded equal-section inclined hood to reduce initial compression wave by high-speed maglev passing through the tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 100-112 doi: 10.11729/syltlx20220123

高速磁浮隧道扩大等截面斜切型缓冲结构减缓初始压缩波机理研究

doi: 10.11729/syltlx20220123
详细信息
    作者简介:

    马智豪:(1998—),男,山东日照人,硕士研究生。研究方向:轨道交通空气动力学及应用技术。通信地址:甘肃省兰州市安宁区路安宁西路88号兰州交通大学甘肃省轨道交通力学应用工程实验室(730070)。E-mail:644144985@qq.com

    通讯作者:

    E-mail:meiyuangui@163.com

  • 中图分类号: U292.91;U451+.3

Mechanism of expanded equal-section inclined hood to reduce initial compression wave by high-speed maglev passing through the tunnel

  • 摘要: 高速轨道车辆驶入隧道,在车前产生初始压缩波,以声速传播至隧道出口处并向外辐射产生微气压波,对环境造成严重危害。采用三维非定常可压缩流动N–S方程和SST kω湍流模型,以国内某型600 km/h的磁浮列车为研究对象,通过模拟磁浮列车驶入扩大等截面无斜切缓冲结构、扩大等截面斜切型缓冲结构和无缓冲结构隧道产生的初始压缩波情况,分析缓冲结构斜切端及斜切角度对初始压缩波的减缓作用及机理。结果表明:初始压缩波最大压力梯度的形成与车头最大横截面积变化率部位进入隧道/缓冲结构入口直接相关,同时与隧道内流量变化率最大值相对应;设置扩大等截面无斜切缓冲结构可较大幅度降低压缩波最大梯度,降低率为49.92%;将扩大等截面缓冲结构的垂直端改为正斜切端可进一步提高降低率,当斜切角分别为10°、20°、30°和39°时,降低率增幅分别为12.93%、10.32%、8.18%和6.28%;扩大等截面斜切型缓冲结构斜切角为10°时对初始压缩波的压力梯度峰值降低作用最明显,总降低率为62.85%。本文采用头型横截面积变化率、空气流量和观测点压缩波三方面耦合分析方法,探究影响初始压缩波最大压力梯度的头型、空气流量之间的相互映射关系,合理解释了缓冲结构减缓初始压缩波机理,可为今后进一步优化列车头型和不同型式缓冲结构设计及其气动效应分析提供了参考。
  • 图  1  列车和隧道模型以及车头横截面积变化

    Figure  1.  The model of train and tunnel and the variation of cross section area of head

    图  2  扩大等横截面斜切型缓冲结构基本特征

    Figure  2.  Basic characteristics of expanded equal cross section oblique hood

    图  3  计算区域边界条件及隧道测点布置示意图

    Figure  3.  Computational domain and location of measurement points on tunnel surface

    图  4  磁浮列车的中等网格方案

    Figure  4.  Medium grid scheme of maglev train

    图  5  不同网格精度下测点3的压力和压力梯度对比

    Figure  5.  Comparison of pressure and pressure gradient at measuring point 3 with different mesh precisions

    图  6  验证模型网格展示和验证结果对比

    Figure  6.  Display of validation model grid and comparison of validation results

    图  7  隧道壁面和地面轨道的压力分布和变化特征

    Figure  7.  Pressure distribution and variation characteristics of tunnel wall and ground track

    图  8  初始压缩波波形和最大压力梯度时间历程图

    Figure  8.  Time history of initial compression wave and maximum pressure gradient

    图  9  初始压缩波波形和最大压力梯度的机理

    Figure  9.  Mechanism of initial compression wave shape and maximum pressure gradient

    图  10  有无缓冲结构下隧道内初始压缩波的形成过程

    Figure  10.  The formation process of initial compression wave in tunnel with or without hood

    图  11  无斜切端缓冲结构与无缓冲结构隧道内初始压缩波压力和压力梯度时间历程曲线

    Figure  11.  Time history curves of initial compression wave pressure and pressure gradient in an enlarged iso-section hood and hood without oblique port

    图  12  无斜切端缓冲结构隧道初始压缩波形成机理

    Figure  12.  Formation mechanism of initial compression wave in hood tunnel without oblique port

    图  13  无斜切端缓冲结构与无缓冲结构隧道内流量和流量变化率时间历程曲线

    Figure  13.  Time history curves of the flow and flow rate in the tunnel of the hood and the hood without the oblique port

    图  14  有无斜切端缓冲结构和无缓冲结构隧道内初始压缩波压力及其梯度时间历程曲线

    Figure  14.  Initial compression wave pressure and its gradient time history curves in the tunnel without hood and with hood and oblique hood

    图  15  10°斜切角缓冲结构隧道内压力和压力梯度形成机理

    Figure  15.  Mechanism diagram of pressure and pressure gradient in the tunnel of hood with 10° oblique Angle

    图  16  有、无斜切端缓冲结构和无缓冲结构隧道内流量和流量变化率时间历程曲线

    Figure  16.  Time history curves of in-tunnel flow and flow rate in the tunnel without hood and with hood and oblique hood

    图  17  不同斜切角度缓冲结构隧道内初始压缩波压力和压力梯度时间历程曲线

    Figure  17.  Time history curves of initial compression wave pressure and pressure gradient in hood tunnel with different oblique angles

    图  18  不同斜切角度缓冲结构隧道内流量和流量变化率时间历程曲线

    Figure  18.  Time history curves of flow and flow rate in hood tunnel with different oblique angles

  • [1] TAKAYAMA K, SASOH A, ONODERA O, et al. Experi-mental investigation on tunnel sonic boom[J]. Shock Waves, 1995, 5(3): 127–138. doi: 10.1007/BF01435520
    [2] 王英学, 高波, 赵文成. 车隧气动效应原理与方法[M]. 北京: 中国铁道出版社, 2017.
    [3] SAITO S. Optimizing cross-sectional area of tunnel entrance hood for high speed rail[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 184: 296–304. doi: 10.1016/j.jweia.2018.11.028
    [4] SAITO S, FUKUDA T. Design of a tunnel entrance hood for high-speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104375. doi: 10.1016/j.jweia.2020.104375
    [5] MIYACHI T, FUKUDA T. Model experiments on area optimization of multiple openings of tunnel hoods to reduce micro-pressure waves[J]. Tunnelling and Underground Space Technology, 2021, 115: 103996. doi: 10.1016/j.tust.2021.103996
    [6] HEINE D, EHRENFRIED K, HEINE G, et al. Experimental and theoretical study of the pressure wave generation in railway tunnels with vented tunnel portals[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 176: 290–300. doi: 10.1016/j.jweia.2018.03.020
    [7] UYSTEPRUYST D, WILLIAM-LOUIS M, MONNOYER F. 3D numerical design of tunnel hood[J]. Tunnelling and Underground Space Technology, 2013, 38: 517–525. doi: 10.1016/j.tust.2013.08.008
    [8] KIM D H, CHEOL S Y, IYER R S, et al. A newly designed entrance hood to reduce the micro pressure wave emitted from the exit of high-speed railway tunnel[J]. Tunnelling and Underground Space Technology, 2021, 108: 103728. doi: 10.1016/j.tust.2020.103728
    [9] XIANG X T, XUE L P, WANG B L. Aerodynamic effects of inclined portals on the initial compression wave generated by a high-speed train entering a tunnel[J]. Journal of Fluids Engineering, 2015, 137(12): 121104. doi: 10.1115/1.4030843
    [10] LI W H, LIU T H, HUO X S, et al. Influence of the enlarged portal length on pressure waves in railway tunnels with cross-section expansion[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 10–22. doi: 10.1016/j.jweia.2019.03.031
    [11] 王田天, 胡冲, 龚彦峰, 等. 扩大斜切式缓冲结构对时速400 km铁路隧道口微气压波缓解研究[J]. 空气动力学学报, 2021, 39(5): 151–161. doi: 10.7638/kqdlxxb-2021.0101

    WANG T T, HU C, GONG Y F, et al. Mitigation of micro-pressure wave at 400 km/h railway tunnel exit by oblique enlarged tunnel-hood[J]. Acta Aerodynamica Sinica, 2021, 39(5): 151–161. doi: 10.7638/kqdlxxb-2021.0101
    [12] 王维洲, 钟登朝, 胖涛, 等. 400km/h高速铁路隧道洞口等截面无开孔扩大型缓冲结构气动效应分析[J]. 高速铁路技术, 2021, 12(5): 57–61.

    WANG W Z, ZHONG D C, PAN T, et al. Aerodynamic effect analysis of enlarged buffer structure without opening at uniform cross-section of tunnel portals of 400km/h high-speed railway[J]. High Speed Railway Technology, 2021, 12(5): 57–61.
    [13] 山崎幹男, 若原敏裕, 永長隆昭, et al. 超高速鉄道トンネル内に生じる圧力変動評価[C]//土木学会論文集. 2003, 738(64): 171-189.
    [14] 本田敦, 高橋和也, 野澤剛二郎, et al. 超高速鉄道トンネルにおける微気圧波の評価および緩衝工の提案[C]//土木学会論文集 A1(構造·地震工学). 2015, 71(3): 327-340.
    [15] 本田敦, 高橋和也, 野澤剛二郎, et al. 超高速鉄道トンネルにおける入口側円型緩衝工の微気圧波低減効果[C]//土木学会論文集 A1(構造·地震工学). 2015, 71(1): 128-138.
    [16] 梅元贵, 赵汗冰, 陈大伟, 等. 时速600 km磁浮列车驶入隧道时初始压缩波特征的数值模拟[J]. 交通运输工程学报, 2020, 20(1): 120–131. doi: 10.19818/j.cnki.1671-1637.2020.01.009

    MEI Y G, ZHAO H B, CHEN D W, et al. Numerical simulation of initial compression wave characteristics of 600 km·h–1 maglev train entering tunnel[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 120–131. doi: 10.19818/j.cnki.1671-1637.2020.01.009
    [17] 梅元贵, 李绵辉, 胡啸, 等. 时速600公里磁浮列车隧道初始压缩波洞内传播特征和洞口微气压波特征[J]. 交通运输工程学报, 2021, 21(4): 150–162. doi: 10.19818/j.cnki.1671-1637.2021.04.011

    MEI Y G, LI M H, HU X, et al. Propagation characteristics of initial compression wave in cave and portal micro-pressure waves characteristics when 600 km·h–1 maglev train entering tunnels[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 150–162. doi: 10.19818/j.cnki.1671-1637.2021.04.011
    [18] 张洁, 王雨舸, 韩帅, 等. 缓冲结构长度对600 km/h磁浮列车通过隧道时的压力波特性影响分析[J]. 中南大学学报(自然科学版), 2022, 53(5): 1668–1678.

    ZHANG J, WANG Y G, HAN S, et al. Influence of hood length on pressure wave characteristics induced by 600 km/h maglev train passing through tunnel[J]. Journal of Central South University (Science and Technology), 2022, 53(5): 1668–1678.
    [19] 张洁, 王雨舸, 韩帅, 等. 空腔结构对高速磁浮隧道压力波的影响研究[J/OL]. [2022-10-30]. 铁道科学与工程学报.

    ZHANG J, WANG Y G, HAN S, et al. Influence of cavity structure on pressure waves in a high-speed maglev tunnel[J/OL]. [2022-10-30]. Journal of Railway Science and Engineering. doi: 10.19713/j.cnki.43-1423/u. T20220986.
    [20] MASHIMO S, NAKATSU E, AOKI T, et al. Entry compression wave generated by a high-speed train entering a tunnel[J]. TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series B, 1995, 61(590): 3720–3727. doi: 10.1299/kikaib.61.3720
    [21] 国家铁路局. 铁路应用空气动力学 第4部分: 列车空气动力学性能数值仿真规范: TB/T 3503.4—2018[S]. 北京: 中国铁道出版社.
    [22] KU Y C, RHO J H, YUN S H, et al. Optimal cross-sectional area distribution of a high-speed train nose to minimize the tunnel micro-pressure wave[J]. Structural and Multidiscipli-nary Optimization, 2010, 42(6): 965–976. doi: 10.1007/s00158-010-0550-6
    [23] 胡啸. 开口型缓冲结构减缓高速磁浮列车驶入隧道时洞内外压力波动特性研究[D]. 兰州: 兰州交通大学, 2019.

    HU X. Study on the alleviation of hood with multiple windows on pressure fluctuation characteristics inside and outside the tunnel induced by high speed maglev train passing through the tunnel[D]. Lanzhou: Lanzhou Jiatong University, 2019. doi: 10.27205/d.cnki.gltec.2019.000506
    [24] YANG M Z, ZHONG S, ZHANG L, et al. 600 km/h moving model rig for high-speed train aerodynamics[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 227: 105063. doi: 10.1016/j.jweia.2022.105063
    [25] LU Y B, WANG T T, YANG M Z, et al. The influence of reduced cross-section on pressure transients from high-speed trains intersecting in a tunnel[J]. Journal of Wind Enginee-ring and Industrial Aerodynamics, 2020, 201: 104161. doi: 10.1016/j.jweia.2020.104161
    [26] CD-ADAPCO GROUP. Methodology STAR–CCM+ version 17.02 user guide[M]. UK: Computational Dynamics Limited, 2021.
  • 加载中
图(18)
计量
  • 文章访问数:  5646
  • HTML全文浏览量:  144
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 修回日期:  2022-12-05
  • 录用日期:  2022-12-08
  • 网络出版日期:  2023-03-10
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日