留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轨道结构对真空管道磁浮列车气动特性的影响

王潇飞 胡啸 李宗澎 刘剑儒 邓自刚 张卫华

王潇飞, 胡啸, 李宗澎, 等. 轨道结构对真空管道磁浮列车气动特性的影响[J]. 实验流体力学, 2023, 37(3): 9-18 doi: 10.11729/syltlx20220140
引用本文: 王潇飞, 胡啸, 李宗澎, 等. 轨道结构对真空管道磁浮列车气动特性的影响[J]. 实验流体力学, 2023, 37(3): 9-18 doi: 10.11729/syltlx20220140
WANG X F, HU X, LI Z P, et al. The effect of track structure on the aerodynamic characteristics of evacuated tube maglev train[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 9-18 doi: 10.11729/syltlx20220140
Citation: WANG X F, HU X, LI Z P, et al. The effect of track structure on the aerodynamic characteristics of evacuated tube maglev train[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 9-18 doi: 10.11729/syltlx20220140

轨道结构对真空管道磁浮列车气动特性的影响

doi: 10.11729/syltlx20220140
基金项目: 国家自然科学基金项目(52022086);四川省科技计划项目(青年科技创新研究团队,22CXTD0070)
详细信息
    作者简介:

    王潇飞:(1997—),男,四川达州人,博士研究生。研究方向:高速列车空气动力学。通信地址:四川省成都市金牛区二环路北一段111号西南交通大学九里校区力学与航空航天学院(610031)。E-mail:Fei2021@my.swjtu.edu.cn

    通讯作者:

    E-mail:deng@swjtu.cn

  • 中图分类号: U171;TB79

The effect of track structure on the aerodynamic characteristics of evacuated tube maglev train

  • 摘要: 真空管道磁浮交通的出现使得地面超高速轨道交通成为可能。真空管道磁浮研究受限于对大功率推进电机和真空环境的需求,难以取得相关试验数据。针对多态耦合轨道交通动模型试验平台永磁轨道和电机气动布局的前期设计,本文开展了相关数值模拟研究。基于动模型试验平台几何结构、电机平台和永磁轨道在管道内的实际布置形式,采用三维、可压缩的RANS方法和SST kω湍流模型,计算了超导磁浮列车在真空管道内超高速运行时的三维流场结构、激波反射和传播规律,对比分析了列车底部矩形槽道对列车气动载荷和管道内流场的影响,重点探究了列车底部压力和速度变化趋势、尾部激波强度和尾涡结构的差异。研究发现:轨道和电机平台的台阶使得尾流区产生了更多的流动分离和激波反射,导致尾部压力波动;列车底部流动间隙增大,列车尾部激波强度下降,激波现象更为明显,气动阻力系数减小8.855%,气动升力系数增大14.312%。
  • 图  1  真空管道高温超导高速磁浮动模型试验平台

    Figure  1.  The moving model test platform of high temperature super-conducting high-speed maglev in evacuated tube

    图  2  2种管道截面和列车几何模型

    Figure  2.  Geometric models of two kinds of tubes and train

    图  3  计算域与边界条件

    Figure  3.  The computational domain and boundary conditions

    图  4  计算网格加密示意图

    Figure  4.  Refinement scheme of the calculation grid

    图  5  基于3组网格计算的列车尾流压力系数比较

    Figure  5.  Comparison of the pressure distribution in the wake region

    图  6  ONERA–M6翼型表面压力系数

    Figure  6.  Pressure coefficient distribution of ONERA–M6

    图  7  管道内流场空间分布和压力云图

    Figure  7.  The spatial distribution of flow field and pressure in the tube

    图  8  列车附近压力系数分布

    Figure  8.  Pressure coefficient distribution around the train

    图  9  2种工况下Line 1和尾部对称面上的速度分布对比

    Figure  9.  Comparison of velocity distributions on Line 1 and y=0 cross section between two conditions

    图  10  列车中部横截面流线分布

    Figure  10.  Streamlines distribution of cross section in middle train

    图  11  尾涡结构对比

    Figure  11.  Comparison of vortex structures in the wake region

    表  1  网格分辨率的比较

    Table  1.   Comparison of the grid resolutions

    网格参数粗网格中网格细网格
    最小网格尺寸Lmin6 mm5 mm4 mm
    边界层层数202022
    网格数量1138万1768万3112万
    下载: 导出CSV

    表  2  3组网格计算结果对比

    Table  2.   Comparison of results of three kinds of grids

    CDCD误差百分比CLCL误差百分比
    粗网格2.3981.999%0.6142.385%
    中网格2.3570.255%0.6310.318%
    细网格2.3510.629
    下载: 导出CSV

    表  3  2种工况下的气动力系数

    Table  3.   Aerodynamic coefficient in two cases

    CD压差阻力系数剪切阻力系数CL
    无槽道2.5862.3270.2590.552
    有槽道2.3572.1290.2280.631
    误差百分比−8.855%−8.509%−11.969%14.312%
    下载: 导出CSV
  • [1] 邓自刚, 张勇, 王博, 等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报, 2019, 54(5): 1063–1072. doi: 10.3969/j.issn.0258-2724.20180204

    DENG Z G, ZHANG Y, WANG B, et al. Present situation and prospect of evacuated tube transportation system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063–1072. doi: 10.3969/j.issn.0258-2724.20180204
    [2] 倪章松, 张军, 符澄, 等. 磁浮飞行风洞试验技术及应用需求分析[J]. 空气动力学学报, 2021, 39(5): 95–110. doi: 10.7638/kqdlxxb-2021.0206

    NI Z S, ZHANG J, FU C, et al. Analyses of the test techniques and applications of maglev flight tunnels[J]. Acta Aerodynamica Sinica, 2021, 39(5): 95–110. doi: 10.7638/kqdlxxb-2021.0206
    [3] 胡啸, 马天昊, 王潇飞, 等. 真空管道磁浮交通车体热压载荷分布特征及其非定常特性[J]. 实验流体力学, 2023, 37(1): 9–28.

    HU X, MA T H, WANG X F, et al. Distribution and unsteady characteristics of the temperature and pressure loads acting on the car-body in evacuated tube maglev trans-port[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 9–28.doi: 10.11729/syltlx20220084
    [4] ZHOU Z W, XIA C, DU X Z, et al. Impact of the isentropic and Kantrowitz limits on the aerodynamics of an evacuated tube transportation system[J]. Physics of Fluids, 2022, 34(6): 066103. doi: 10.1063/5.009097
    [5] YU Q J, YANG X F, NIU J Q, et al. Theoretical and numerical study of choking mechanism of fluid flow in Hyperloop system[J]. Aerospace Science and Technology, 2022, 121: 107367. doi: 10.1016/j.ast.2022.107367
    [6] 周鹏, 李田, 张继业, 等. 真空管道超级列车激波簇结构研究[J]. 机械工程学报, 2020, 56(2): 86–97. doi: 10.3901/JME.2020.02.086

    ZHOU P, LI T, ZHANG J Y, et al. Research on shock wave trains generated by the hyper train in the evacuated tube[J]. Journal of Mechanical Engineering, 2020, 56(2): 86–97. doi: 10.3901/JME.2020.02.086
    [7] 黄尊地, 梁习锋, 常宁. 真空管道交通列车气动阻力数值分析[J]. 机械工程学报, 2019, 55(8): 165–172. doi: 10.3901/JME.2019.08.165

    HUANG Z D, LIANG X F, CHANG N. Numerical analysis of train aerodynamic drag of vacuum tube traffic[J]. Journal of Mechanical Engineering, 2019, 55(8): 165–172. doi: 10.3901/JME.2019.08.165
    [8] SUI Y, NIU J Q, RICCO P, et al. Impact of vacuum degree on the aerodynamics of a high-speed train capsule running in a tube[J]. International Journal of Heat and Fluid Flow, 2021, 88: 108752. doi: 10.1016/j.ijheatfluidflow.2020.108752
    [9] LE T T G, KIM J H, JANG K S, et al. Numerical study on the influence of the nose and tail shape on the aerodynamic characteristics of a Hyperloop pod[J]. Aerospace Science and Technology, 2022, 121: 107362. doi: 10.1016/j.ast.2022.107362
    [10] BAO S J, HU X, WANG J K, et al. Numerical study on the influence of initial ambient temperature on the aerodynamic heating in the tube train system[J]. Advances in Aerodynamics, 2020, 2(1): 1–18. doi: 10.1186/s42774-020-00053-8
    [11] NIU J Q, SUI Y, YU Q J, et al. Effect of acceleration and deceleration of a capsule train running at transonic speed on the flow and heat transfer in the tube[J]. Aerospace Science and Technology, 2020, 105: 105977. doi: 10.1016/j.ast.2020.105977
    [12] HU X, DENG Z G, ZHANG W H. Effect of cross passage on aerodynamic characteristics of super-high-speed evacuated tube transportation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 211: 104562. doi: 10.1016/j.jweia.2021.104562
    [13] JIA W G, WANG K, CHENG A P, et al. Air flow and differential pressure characteristics in the vacuum tube transportation system based on pressure recycle ducts[J]. Vacuum, 2018, 150: 58–68. doi: 10.1016/j.vacuum.2017.12.023
    [14] YANG Y, ZHANG H D, HONG Z D. Research on optimal design method for drag reduction of vacuum pipeline vehicle body[J]. International Journal of Computational Fluid Dynamics, 2019, 33(1-2): 77–86. doi: 10.1080/10618562.2019.1601711
    [15] DENG Z G, ZHANG W H, WANG L, et al. A high-speed running test platform for high-temperature superconducting maglev[J]. IEEE Transactions on Applied Superconduc-tivity, 2022, 32(4): 1–5. doi: 10.1109/TASC.2022.3143474
    [16] 胡啸, 马天昊, 王潇飞, 等. 真空管道磁浮交通气动特性的尺度效应[J/OL]. 西南交通大学学报. https://kns.cnki.net/kcms/detail/51.1277.u.20220826.1708.018.html. doi: 10.3969/j.issn.0258-2724.20220010.

    HU X, MA T H, WANG X F, et al. Scale effect of aerodynamic characteristics in evacuated tube maglev transport[J/OL]. [2022-12-06]. Journal of Southwest Jiaotong University. https://kns.cnki.net/kcms/detail/51.1277.u.20220826.1708.018.html. doi: 10.3969/j.issn.0258-2724.20220010
    [17] BI H Q, WANG Z H, WANG H L, et al. Aerodynamic phenomena and drag of a maglev train running dynamically in a vacuum tube[J]. Physics of Fluids, 2022, 34(9): 096111. doi: 10.1063/5.0104819
    [18] 宋嘉源, 李田, 张晓涵, 等. 亚声速真空管道磁浮系统气动热特性研究[J]. 空气动力学学报, 2022, 40(2): 115–121. doi: 10.7638/kqdlxxb-2021.0227

    SONG J Y, LI T, ZHANG X H, et al. Research on aerodynamic and thermal characteristics of subsonic evacuated tube maglev system[J]. Acta Aerodynamica Sinica, 2022, 40(2): 115–121. doi: 10.7638/kqdlxxb-2021.0227
    [19] MULD T W, EFRAIMSSON G, HENNINGSON D S. Flow structures around a high-speed train extracted using Proper Orthogonal Decomposition and Dynamic Mode Decompo-sition[J]. Computers & Fluids, 2012, 57: 87–97. doi: 10.1016/j.compfluid.2011.12.012
    [20] ZHONG S, QIAN B S, YANG M Z, et al. Investigation on flow field structure and aerodynamic load in vacuum tube transportation system[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 215: 104681. doi: 10.1016/j.jweia.2021.104681
    [21] LI T, QIN D, ZHANG J Y. Effect of RANS turbulence model on aerodynamic behavior of trains in crosswind[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1): 1–12. doi: 10.1186/s10033-019-0402-2
    [22] GAO G J, LI F, HE K, et al. Investigation of bogie positions on the aerodynamic drag and near wake structure of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 185: 41–53. doi: 10.1016/j.jweia.2018.10.012
    [23] 梅元贵, 李绵辉, 胡啸, 等. 时速600公里磁浮列车隧道初始压缩波洞内传播特征和洞口微气压波特征[J]. 交通运输工程学报, 2021, 21(4): 150–162. doi: 10.19818/j.cnki.1671-1637.2021.04.011

    MEI Y G, LI M H, HU X, et al. Propagation characteristics of initial compression wave in cave and portal micro-pressure waves characteristics when 600 km·h–1 maglev train entering tunnels[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 150–162. doi: 10.19818/j.cnki.1671-1637.2021.04.011
    [24] WANG S B, BURTON D, HERBST A H, et al. The effect of the ground condition on high-speed train slipstream[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172: 230–243. doi: 10.1016/j.jweia.2017.11.009
    [25] ZHANG J, ADAMU A, SU X C, et al. Effect of simplifying bogie regions on aerodynamic performance of high-speed train[J]. Journal of Central South University, 2022, 29(5): 1717–1734. doi: 10.1007/s11771-022-4948-2
    [26] SCHMITT V. Pressure distributions on the ONERA M6- wing at transonic Mach numbers, experimental data base for computer program assessment[J]. Report of the Fluid Dynamics Panel Working Group 04, AGARD AR-138, 1979.
    [27] MANI M, LADD J, CAIN A, et al. An assessment of one- and two-equation turbulence models for internal and external flows[C]//Proc of the 28th Fluid Dynamics Conference. 1997. doi: 10.2514/6.1997-2010
    [28] 张晓涵, 李田, 张继业, 等. 亚音速真空管道列车气动壅塞及激波现象[J]. 机械工程学报, 2021, 57(4): 182–190. doi: 10.3901/JME.2021.04.182

    ZHANG X H, LI T, ZHANG J Y, et al. Aerodynamic choked flow and shock wave phenomena of subsonic evacuated tube train[J]. Journal of Mechanical Engineering, 2021, 57(4): 182–190. doi: 10.3901/JME.2021.04.182
    [29] 胡啸, 邓自刚, 张银龙, 等. 真空管道磁浮交通管内波系时空分布特征[J]. 空气动力学学报, 2022, 40(6): 146–154. doi: 10.7638/kqdlxxb-2021.0242

    HU X, DENG Z G, ZHANG Y L, et al. Characteristics of spatial and temporal distribution of wave system in evacuated tube maglev transportation[J]. Acta Aerody-namica Sinica, 2022, 40(6): 146–154. doi: 10.7638/kqdlxxb-2021.0242
    [30] LI T, SONG J Y, ZHANG X H, et al. Theoretical and numerical studies on compressible flow around a subsonic evacuated tube train[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(15): 8261–8271. doi: 10.1177/09544062221087826
    [31] 孟石, 周丹, 孟爽. 轨道间隙对磁浮列车气动性能的影响[J]. 中南大学学报(自然科学版), 2020, 51(12): 3537–3545. doi: 10.11817/j.issn.1672-7207.2020.12.027

    MENG S, ZHOU D, MENG S. Effect of rail gap on aerodynamic performance of maglev train[J]. Journal of Central South University(Science and Technology), 2020, 51(12): 3537–3545. doi: 10.11817/j.issn.1672-7207.2020.12.027
    [32] HU X, DENG Z G, ZHANG J W, et al. Effect of tracks on the flow and heat transfer of supersonic evacuated tube maglev transportation[J]. Journal of Fluids and Structures, 2021, 107: 103413. doi: 10.1016/j.jfluidstructs.2021.103413
    [33] 丁叁叁, 姚拴宝, 陈大伟. 高速磁浮列车气动升力特性[J]. 机械工程学报, 2020, 56(8): 228–234. doi: 10.3901/JME.2020.08.228

    DING S S, YAO S B, CHEN D W. Aerodynamic lift force of high-speed maglev train[J]. Journal of Mechanical Engi-neering, 2020, 56(8): 228–234. doi: 10.3901/JME.2020.08.228
    [34] DONG T Y, MINELLI G, WANG J B, et al. The effect of ground clearance on the aerodynamics of a generic high-speed train[J]. Journal of Fluids and Structures, 2020, 95: 102990. doi: 10.1016/j.jfluidstructs.2020.102990
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  265
  • HTML全文浏览量:  111
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-09
  • 修回日期:  2022-12-28
  • 录用日期:  2023-02-17
  • 网络出版日期:  2023-03-27
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日