留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多目标优化的光场多光谱温度反演方法

孙林林 方华 施圣贤

孙林林, 方华, 施圣贤. 基于多目标优化的光场多光谱温度反演方法[J]. 实验流体力学, doi: 10.11729/syltlx20230011
引用本文: 孙林林, 方华, 施圣贤. 基于多目标优化的光场多光谱温度反演方法[J]. 实验流体力学, doi: 10.11729/syltlx20230011
SUN L L, FANG H, SHI S X. Multi-objective optimization method for light-field multi-spectral pyrometer[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230011
Citation: SUN L L, FANG H, SHI S X. Multi-objective optimization method for light-field multi-spectral pyrometer[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230011

基于多目标优化的光场多光谱温度反演方法

doi: 10.11729/syltlx20230011
基金项目: 国家自然科学基金(12172222)
详细信息
    作者简介:

    孙林林:(1997—),女,贵州遵义人,硕士研究生。研究方向:光场多光谱高温测量。通信地址:上海市闵行区东川路800号上海交通大学机械与动力工程学院三维光场实验室(200240)。E-mail:sunlinlin@sjtu.edu.cn

    通讯作者:

    E-mail:kirinshi@sjtu.edu.cn

  • 中图分类号: V231.1

Multi-objective optimization method for light-field multi-spectral pyrometer

  • 摘要: 多光谱测温是一种应用广泛的非接触式测温方法。针对多光谱高温计分光系统复杂的问题,本文设计了基于光场相机的光场多光谱高温计,用简洁的光学系统即可实现二维高温测量。光场相机可同时记录入射光线的方向和强度,通过在相机主镜头前放置滤波片阵列,光线的方向信息被替换为光谱信息,使得图像传感器可同时获取光线的光谱和强度。在光谱发射率未知的情况下获得被测对象温度,是多光谱数据处理中亟待解决的难题。常用的发射率假设模型法无法广泛应用于各种材料的温度测量。本文提出了一种基于多目标优化的多光谱温度反演方法,无需发射率先验知识即可精确求解被测对象真实温度和光谱发射率。该方法根据辐射方程建立多目标函数,设置发射率约束条件,并采用惩罚函数法求解约束优化问题。黑体炉标定实验结果表明:该方法的测量误差小于1%,表明了所提出的光场多光谱测温硬件设计及温度反演方法的可行性和可靠性。
  • 图  1  光场多光谱高温计原理图

    Figure  1.  Schematic of the light-field multi-spectral pyrometer

    图  2  光场多光谱成像流程图

    Figure  2.  Flow chart for light-field multi-spectral pyrometer imaging

    图  3  黑体炉标定实验图

    Figure  3.  Black-body furnace calibration experiment

    图  4  黑体炉的光场多光谱图像

    Figure  4.  Raw multi-spectral image of Black-body furnace

    图  5  黑体炉的二维温度误差分布

    Figure  5.  Two-dimensional temperature error distribution of black-body furnace

    表  1  光场多光谱高温计参数

    Table  1.   Parameters of the light-field multi-spectral pyrometer

    参数
    滤波片波长(λi ± 10 nm)470, 500, 530, 575, 620, 670
    微透镜阵列像素800像素 × 600像素
    微透镜阵列尺寸25 mm × 18 mm
    单个微透镜尺寸/µm28
    微透镜焦距/µm510
    传感器像素7915像素 × 5436像素
    传感器尺寸22 mm × 15 mm
    像元尺寸/µm2.8
    下载: 导出CSV
  • [1] 戴景民. 多光谱辐射测温技术研究[D]. 哈尔滨: 哈尔滨工业大学, 1995.

    DAI J M. Study of the technique of multi-spectral radiation thermometry[D]. Harbin: Harbin Institute of Technology, 1995.
    [2] DENG J J, ZHANG L W, HUI L A, et al. Indium tin oxide thin-film thermocouple probe based on sapphire microrod[J]. Sensors (Basel, Switzerland), 2020, 20(5): 1289. doi: 10.3390/s20051289
    [3] LI Y, LI Z M. The research of temperature indicating paints and its application in aero-engine temperature measure-ment[J]. Procedia Engineering, 2015, 99: 1152–1157. doi: 10.1016/j.proeng.2014.12.697
    [4] 王展. 基于示温漆图像的温度自动判读算法研究[D]. 成都: 电子科技大学, 2018.

    WANG Z. Research on automatical temperature interpre-tation algorithms based on temperature sensitive paint image[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
    [5] VOGEL G, THOMAS A, GINZBURSKY E, et al. Long duration uniform crystal temperature sensor application in industrial gas turbine for cooling design validation[C]//Proceedings of ASME Turbo Expo 2020: Turboma-chinery Technical Conference and Exposition. 2021. doi: 10.1115/GT2020-15010
    [6] 张敏, 孙晶, 刘慧敏, 等. 不同探针分子温敏漆的制备及性能对比研究[J]. 无机化学学报, 2016, 32(3): 421–426. doi: 10.11862/CJIC.2016.058

    ZHANG M, SUN J, LIU H M, et al. Preparation and comparative study of temperature sensitive paint with different probe molecules[J]. Chinese Journal of Inorganic Chemistry, 2016, 32(3): 421–426. doi: 10.11862/CJIC.2016.058
    [7] 张磊. 基于光谱识别的多光谱测温技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    ZHANG L. Research on multi-spectral temperature measurement technology based on spectrum recognition[D]. Harbin: Harbin Institute of Technology, 2016.
    [8] HOSSAIN M M, LU G, YAN Y. Measurement of flame temperature distribution using optical tomographic and two-color pyrometric techniques[C]//Proc of the 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings. 2012: 1856-1860. doi: 10.1109/I2MTC.2012.6229354
    [9] ARAÚJO A. Multi-spectral pyrometry—a review[J]. Measurement Science and Technology, 2017, 28(8): 082002. doi: 10.1088/1361-6501/aa7b4b
    [10] HAGEN N A, KUDENOV M W. Review of snapshot spectral imaging technologies[J]. Optical Engineering, 2013, 52(9): 090901. doi: 10.1117/1.OE.52.9.090901
    [11] MADURA H, KASTEK M, PIĄTKOWSKI T. Automatic compensation of emissivity in three-wavelength pyrometers[J]. Infrared Physics & Technology, 2007, 51(1): 1–8. doi: 10.1016/j.infrared.2006.11.001
    [12] WEN C D, CHAI T Y. Experimental investigation of emissivity of aluminum alloys and application of multispectral radiation thermometry[J]. Applied Thermal Engineering, 2011, 31(14-15): 2414–2421. doi: 10.1016/j.applthermaleng.2011.04.005
    [13] CHEN L W, SUN S, GAO S, et al. Multi-spectral temperature measurement based on adaptive emissivity model under high temperature background[J]. Infrared Physics & Technology, 2020, 111: 103523. doi: 10.1016/j.infrared.2020.103523
    [14] LIU S, FARAHMAND P, KOVACEVIC R. Optical monitoring of high power direct diode laser cladding[J]. Optics & Laser Technology, 2014, 64: 363–376. doi: 10.1016/j.optlastec.2014.06.002
    [15] 丛大成, 戴景民, 孙晓刚, 等. RBF网络在多光谱测温中的应用研究[J]. 红外与毫米波学报, 2001, 20(2): 97–101. doi: 10.3321/j.issn:1001-9014.2001.02.004

    CONG D C, DAI J M, SUN X G, et al. Study of the application of RBF network to multi-spectral thermome-try[J]. Journal of Infrared and Millimeter Waves, 2001, 20(2): 97–101. doi: 10.3321/j.issn:1001-9014.2001.02.004
    [16] 孙晓刚, 原桂彬, 戴景民. 基于遗传神经网络的多光谱辐射测温法[J]. 光谱学与光谱分析, 2007, 27(2): 213–216. doi: 10.3964/j.issn.1000-0593.2007.02.002

    SUN X G, YUAN G B, DAI J M. Multi-spectral thermometry based on GA-BP algorithm[J]. Spectroscopy and Spectral Analysis, 2007, 27(2): 213–216. doi: 10.3964/j.issn.1000-0593.2007.02.002
    [17] 席剑辉, 徐振方, 傅莉, 等. 红外辐射亮度的RBF网络建模及其光谱发射率估计[J]. 红外与激光工程, 2016, 45(S1): 24–29. doi: 10.3788/IRLA201645.S104004

    XI J H, XU Z F, FU L, et al. Modeling infrared radiance and calculating spectral emissivity based on RBF network[J]. Infrared and Laser Engineering, 2016, 45(S1): 24–29. doi: 10.3788/IRLA201645.S104004
    [18] WANG N, SHEN H, ZHU R H. Constraint optimization algorithm for spectral emissivity calculation in multispectral thermometry[J]. Measurement, 2020, 170: 108725. doi: 10.1016/j.measurement.2020.108725
    [19] XING J, PENG B, MA Z, et al. Directly data processing algorithm for multi-wavelength pyrometer (MWP)[J]. Optics Express, 2017, 25(24): 30560–30574. doi: 10.1364/OE.25.030560
    [20] LIANG J F, DAI L, CHEN S, et al. Generalized inverse matrix-exterior penalty function (GIM–EPF) algorithm for data processing of multi-wavelength pyrometer (MWP)[J]. Optics Express, 2018, 26(20): 25706–25720. doi: 10.1364/OE.26.025706
    [21] LUAN Y S, MEI D, SHI S X. Light-field multi-spectral radiation thermometry[J]. Optics Letters, 2021, 46(1): 9–12. doi: 10.1364/OL.408437
    [22] ZHANG Y, ZOU Z, YAN F. A multispectral thermometry based on multi-objective constraint optimization[J]. Measurement, 2022, 192: 110813. doi: 10.1016/j.measurement.2022.110813
    [23] NG R, LEVOY M, BRÉDIF M, et al. Light field photography with a hand-held plenoptic camera[R]. Stanford Tech Report CTSR 2005, 2005.
    [24] EWEES A A, ELAZIZ M A, OLIVA D. A new multi-objective optimization algorithm combined with opposition-based learning[J]. Expert Systems With Applications, 2021, 165: 113844. doi: 10.1016/j.eswa.2020.113844
    [25] JABER A, LAFON P, YOUNES R. A branch-and-bound algorithm based on NSGAII for multi-objective mixed integer nonlinear optimization problems[J]. Engineering Optimization, 2022, 54(6): 1004–1022. doi: 10.1080/0305215X.2021.1904918
    [26] 张育中. 连铸坯表面温度场视觉测量方法与应用研究[D]. 沈阳: 东北大学, 2014.

    ZHANG Y Z. Research on method and application of vision-based temperature field measurement for continuous casting billet[D]. Shenyang: Northeastern University, 2014.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  428
  • HTML全文浏览量:  113
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-13
  • 修回日期:  2023-03-10
  • 录用日期:  2023-03-15
  • 网络出版日期:  2023-04-17

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日