留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于仿生尼龙丝的圆柱绕流被动控制

陈文礼 林隆瀚 邓质 高东来

陈文礼, 林隆瀚, 邓质, 等. 基于仿生尼龙丝的圆柱绕流被动控制[J]. 实验流体力学, 2023, 37(4): 66-75 doi: 10.11729/syltlx20230019
引用本文: 陈文礼, 林隆瀚, 邓质, 等. 基于仿生尼龙丝的圆柱绕流被动控制[J]. 实验流体力学, 2023, 37(4): 66-75 doi: 10.11729/syltlx20230019
CHEN W L, LIN L H, DENG Z, et al. Passive control on flow past a circular cylinder with bionic nylon wires[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 66-75 doi: 10.11729/syltlx20230019
Citation: CHEN W L, LIN L H, DENG Z, et al. Passive control on flow past a circular cylinder with bionic nylon wires[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 66-75 doi: 10.11729/syltlx20230019

基于仿生尼龙丝的圆柱绕流被动控制

doi: 10.11729/syltlx20230019
基金项目: 国家自然科学基金优秀青年科学基金项目(51722805);国家自然科学基金项目(51978222,51578188)
详细信息
    作者简介:

    陈文礼:(1980—),男,湖南邵东人,博士,教授。研究方向: 大跨度桥梁抗风,先进流动测试技术,流固耦合与控制。通信地址:黑龙江省哈尔滨市南岗区黄河路73号哈尔滨工业大学土木工程学院 (150090)。 E-mail:cwl_80@hit.edu.cn

    通讯作者:

    E-mail:gao@hit.edu.cn

  • 中图分类号: O351.2

Passive control on flow past a circular cylinder with bionic nylon wires

  • 摘要: 通过风洞实验研究了鸟类羽毛仿生尼龙丝对圆柱绕流场的控制效果及机理。仿生尼龙丝布置于圆柱的前驻点,雷诺数为2.67 × 104,特征变量为尼龙丝长度与圆柱直径之比L/D。采用表面压力测量系统获取圆柱表面压力系数以分析圆柱周围的空气动力。利用高速粒子图像测速(PIV)系统获取圆柱的二维流场信息,并将获取的信息进行本征正交分解(POD),得到流场瞬时特性和时均特性。实验结果表明:L/D < 0.6时,由尼龙丝诱导产生的旋涡无法到达尾流场,此时尼龙丝的控制效果受到限制;L/D > 1.0时,尼龙丝可以显著降低圆柱尾流场的湍动能和雷诺应力,并抑制圆柱的升力系数和阻力系数;当L/D足够大时,尼龙丝可以抑制剪切层之间的相互接触,从而改变圆柱的卡门涡街旋涡脱落模式。
  • 图  1  实验模型照片

    Figure  1.  Photo of the test model

    图  2  仿生被动控制的实现

    Figure  2.  Implementation of bionic passive flow control

    图  3  测压环示意图

    Figure  3.  Schematic diagram of the pressure measurement plane

    图  4  PIV测量实验示意图

    Figure  4.  Schematic diagram of the PIV measurement experiment

    图  5  无控和控制工况下的圆柱表面压力分布

    Figure  5.  Pressure distributions around the baseline and controlled circular cylinder model

    图  6  无控和控制工况下圆柱非稳态升力系数的功率谱分析

    Figure  6.  Frequency spectrum analysis of the nonstationary lift coefficients about the cylindrical model with controlled and baseline cases

    图  7  无控和控制工况下的圆柱升力系数和阻力系数

    Figure  7.  Drag and lift coefficients acting on the baseline and controlled circular cylinder model

    图  8  PIV系统获得的瞬时涡量结构演变图

    Figure  8.  Instantaneous flow structures evolution measured by PIV measurement system

    图  9  无控和控制工况下的湍动能分布和时均尾流场

    Figure  9.  TKE distributions and time-averaged wake field about the baseline and controlled circular cylinder model

    图  10  无控和控制工况下的尼龙丝变形

    Figure  10.  The nylon wires' deformation of the baseline and controlled circular cylinder model

    图  11  无控和控制工况下的圆柱尾流场的雷诺剪切应力分布

    Figure  11.  RSS concentrations in the wake field about the baseline and controlled circular cylinder model

    图  12  无控和控制工况下圆柱的顺流向雷诺正应力分布

    Figure  12.  Pulsating velocity distributions in streamwise direction of the baseline and controlled circular cylinder model

  • [1] 陈政清. 桥梁风工程[M]. 北京: 人民交通出版社, 2005.

    CHEN Z Q. Bridge wind engineering[M]. Beijing: China Communications Press, 2005.
    [2] 刘庆宽, 孙一飞, 张磊杰, 等. 凹痕对斜拉桥斜拉索气动性能影响研究[J]. 工程力学, 2019, 36(S1): 272–277. doi: 10.6052/j.issn.1000-4750.2018.05.S053

    LIU Q K, SUN Y F, ZHANG L J, et al. Study on the influence of dent on aerodynamic performance of stay cables of cable-stayed bridge[J]. Engineering Mechanics, 2019, 36(S1): 272–277. doi: 10.6052/j.issn.1000-4750.2018.05.S053
    [3] 董欣, 丁洁民, 邹云峰, 等. 倒角化处理对于矩形高层建筑风荷载特性的影响机理研究[J]. 工程力学, 2021, 38(6): 151–162, 208. doi: 10.6052/j.issn.1000-4750.2020.07.0451

    DONG X, DING J M, ZOU Y F, et al. Effect of rounded corners on wind load characteristics of rectangular tall buildings[J]. Engineering Mechanics, 2021, 38(6): 151–162, 208. doi: 10.6052/j.issn.1000-4750.2020.07.0451
    [4] CHOI H, JEON W P, KIM J. Control of flow over a bluff body[J]. Annual Review of Fluid Mechanics, 2008, 40: 113–139. doi: 10.1146/annurev.fluid.39.050905.110149
    [5] GAO D L, MENG H, HUANG Y W, et al. Active flow control of the dynamic wake behind a square cylinder using combined jets at the front and rear stagnation points[J]. Physics of Fluids, 2021, 33(4): 047101. doi: 10.1063/5.0043191
    [6] YU H Y, CHEN W L, XU Z H, et al. Wake stabilization behind a cylinder by secondary flow over the leeward surface[J]. Physics of Fluids, 2022, 34(5): 055110. doi: 10.1063/5.0090797
    [7] BEARMAN P, BRANKOVIĆ M. Experimental studies of passive control of vortex-induced vibration[J]. European Journal of Mechanics - B, 2004, 23(1): 9–15. doi: 10.1016/j.euromechflu.2003.06.002
    [8] ZHOU B, WANG X K, GUO W, et al. Control of flow past a dimpled circular cylinder[J]. Experimental Thermal and Fluid Science, 2015, 69: 19–26. doi: 10.1016/j.expthermflusci.2015.07.020
    [9] ZHOU X, WANG J J, HU Y. Experimental investigation on the flow around a circular cylinder with upstream splitter plate[J]. Journal of Visualization, 2019, 22(4): 683–695. doi: 10.1007/s12650-019-00560-x
    [10] GAO D L, HUANG Y W, CHEN W L, et al. Control of circular cylinder flow via bilateral splitter plates[J]. Physics of Fluids, 2019, 31(5): 057105. doi: 10.1063/1.5097309
    [11] GAO D L, CHEN W L, LI H, et al. Flow around a circular cylinder with slit[J]. Experimental Thermal and Fluid Science, 2017, 82: 287–301. doi: 10.1016/j.expthermflusci.2016.11.025
    [12] KO N W M, LEUNG Y C, CHEN J J J. Flow past V-groove circular cylinders[J]. AIAA Journal, 1987, 25(6): 806–811. doi: 10.2514/3.9704
    [13] LIM H C, LEE S J. Flow control of circular cylinders with longitudinal grooved surfaces[J]. AIAA Journal, 2002, 40(10): 2027–2036. doi: 10.2514/2.1535
    [14] HUANG S. VIV suppression of a two-degree-of-freedom circular cylinder and drag reduction of a fixed circular cylinder by the use of helical grooves[J]. Journal of Fluids and Structures, 2011, 27(7): 1124–1133. doi: 10.1016/j.jfluidstructs.2011.07.005
    [15] CHAUHAN M K, DUTTA S, MORE B S, et al. Experimental investigation of flow over a square cylinder with an attached splitter plate at intermediate Reynolds number[J]. Journal of Fluids and Structures, 2018, 76: 319–335. doi: 10.1016/j.jfluidstructs.2017.10.012
    [16] SAHU T R, FURQUAN M, JAISWAL Y, et al. Flow-induced vibration of a circular cylinder with rigid splitter plate[J]. Journal of Fluids and Structures, 2019, 89: 244–256. doi: 10.1016/j.jfluidstructs.2019.03.015
    [17] BOCANEGRA EVANS H, HAMED A M, GORUMLU S, et al. Engineered bio-inspired coating for passive flow control[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): 1210–1214. doi: 10.1073/pnas.1715567115
    [18] BRÜCKER C. Interaction of flexible surface hairs with near-wall turbulence[J]. Journal of Physics: Condensed Matter, 2011, 23(18): 184120. doi: 10.1088/0953-8984/23/18/184120
    [19] TALBOYS E, GEYER T F, BRÜCKER C. An aeroacoustic investigation into the effect of self-oscillating trailing edge flaplets[J]. Journal of Fluids and Structures, 2019, 91: 102598. doi: 10.1016/j.jfluidstructs.2019.02.014
    [20] KUNZE S, BRÜCKER C. Control of vortex shedding on a circular cylinder using self-adaptive hairy-flaps[J]. Comptes Rendus Mécanique, 2012, 340(1-2): 41–56. doi: 10.1016/j.crme.2011.11.009
    [21] GEYER T F, KAMPS L, SARRADJ E, et al. Vortex shedding and modal behavior of a circular cylinder equipped with flexible flaps[J]. Acta Acustica united with Acustica, 2019, 105(1): 210–219. doi: 10.3813/AAA.919301
    [22] KAMPS L, GEYER T F, SARRADJ E, et al. Vortex shedding noise of a cylinder with hairy flaps[J]. Journal of Sound and Vibration, 2017, 388: 69–84. doi: 10.1016/j.jsv.2016.10.039
    [23] DENG Z, CHEN W L, YANG Z F. The control mechanism of the soft trailing fringe on the flow characteristics over an airfoil[J]. Physics of Fluids, 2022, 34(9): 095112. doi: 10.1063/5.0106936
    [24] DENG J, MAO X R, XIE F F. Dynamics of two-dimensional flow around a circular cylinder with flexible filaments attached[J]. Physical Review E, 2019, 100(5): 053107. doi: 10.1103/physreve.100.053107
    [25] DENG J, XU J J, YE Q Q. Experimental investigation of flow around a circular cylinder with attached membranes[J]. Journal of Fluids and Structures, 2022, 113: 103628. doi: 10.1016/j.jfluidstructs.2022.103628
    [26] KOEHL M A R. How do benthic organisms withstand moving water?[J]. American Zoologist, 1984, 24(1): 57–70. doi: 10.1093/icb/24.1.57
    [27] BECHERT D W, BRUSE M, HAGE W, et al. Fluid mechanics of biological surfaces and their technological application[J]. Naturwissenschaften, 2000, 87(4): 157–171. doi: 10.1007/s001140050696
    [28] DE LANGRE E. Effects of wind on plants[J]. Annual Review of Fluid Mechanics, 2008, 40: 141–168. doi: 10.1146/annurev.fluid.40.111406.102135
    [29] IRWIN H P A H, COOPER K R, GIRARD R. Correction of distortion effects caused by tubing systems in measurements of fluctuating pressures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1979, 5(1-2): 93–107. doi: 10.1016/0167-6105(79)90026-6
    [30] CHEN W L, LI H, HU H. An experimental study on a suction flow control method to reduce the unsteadiness of the wind loads acting on a circular cylinder[J]. Experiments in Fluids, 2014, 55(4): 1707. doi: 10.1007/s00348-014-1707-7
    [31] PARK J, DERRANDJI-AOUAT A, WU B, et al. Uncertainty analysis: Particle imaging velocimetry[C]// ITTC Recommended Procedures and Guidelines, Interna-tional Towing Tank Conference. 2008.
    [32] SIROVICH L. Turbulence and the dynamics of coherent structures. I. Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3): 561–571. doi: 10.1090/qam/910462
    [33] DERI E, BRAZA M, CID E, et al. Investigation of the three-dimensional turbulent near-wake structure past a flat plate by tomographic PIV at high Reynolds number[J]. Journal of Fluids and Structures, 2014, 47: 21–30. doi: 10.1016/j.jfluidstructs.2012.11.005
    [34] PROTHIN S, DJERIDI H, BILLARD J Y. Coherent and turbulent process analysis of the effects of a longitudinal vortex on boundary layer detachment on a NACA0015 foil[J]. Journal of Fluids and Structures, 2014, 47: 2–20. doi: 10.1016/j.jfluidstructs.2013.08.014
  • 加载中
图(12)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  55
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-27
  • 修回日期:  2023-03-26
  • 录用日期:  2023-07-06
  • 网络出版日期:  2023-07-31
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日