留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

振荡射流研究进展

吴梦维 徐敏义 米建春

吴梦维, 徐敏义, 米建春. 振荡射流研究进展[J]. 实验流体力学, 2023, 37(4): 1-17 doi: 10.11729/syltlx20230022
引用本文: 吴梦维, 徐敏义, 米建春. 振荡射流研究进展[J]. 实验流体力学, 2023, 37(4): 1-17 doi: 10.11729/syltlx20230022
WU M W, XU M Y, MI J C. A review on the development of oscillating jets[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 1-17 doi: 10.11729/syltlx20230022
Citation: WU M W, XU M Y, MI J C. A review on the development of oscillating jets[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 1-17 doi: 10.11729/syltlx20230022

振荡射流研究进展

doi: 10.11729/syltlx20230022
基金项目: 国家自然科学基金项目(11972048)
详细信息
    作者简介:

    吴梦维:(1997—),男,河南商丘人,博士研究生。研究方向:湍流混合及流动控制。通信地址:北京市海淀区北京大学工学院1号楼(100871)。E-mail:wumengwei@pku.edu.cn

    通讯作者:

    E-mail:xuminyi@dlmu.edu.cn

    jmi@pku.edu.cn

  • 中图分类号: O358

A review on the development of oscillating jets

  • 摘要:

    振荡射流可有效增强喷射流体与周围流体的相互作用,在能源、化工、航空航天、精密制造等领域有着重要应用价值,受到国内外学者广泛关注。为更好地了解振荡射流发展现状及未来发展趋势,本文对微射流、机械式、反馈式、钝体–V形喷嘴、冲击V形板、腔体自激拍打、薄膜自激拍打等7种激励方式的振荡射流进行了全面归纳与分类,对比分析了不同激励方式的原理及其产生的振荡射流特性,指出了振荡射流技术存在的问题及工业应用的局限性,预测了其发展前景并给出了发展建议。

  • 图  1  振荡射流激发方式分类

    Figure  1.  Classification of oscillating jet excitation modes

    图  2  微射流产生方式

    Figure  2.  Microjet generation modes

    图  3  侧向微射流与主射流射出方向示意图

    Figure  3.  Schematic diagram of the direction of lateral microjet and main jet

    图  4  流场显示和应用示意

    Figure  4.  Flow field display and application diagram

    图  5  机械振荡射流示意图

    Figure  5.  Schematic diagram of mechanical oscillating jet

    图  6  不同类型反馈式振荡射流激励器

    Figure  6.  Different types of oscillating jet exciter with feedback

    图  7  无反馈激励射流[63]

    Figure  7.  Non-feedback excitable jet[63]

    图  8  单反馈振荡射流激励器燃烧装置及工作机制[64]

    Figure  8.  Combustion device and working mechanism of single feedback oscillator[64]

    图  9  反馈式腔体相关研究示意图

    Figure  9.  Schematic diagram of feedback cavity related research

    图  10  钝体-V形激励器

    Figure  10.  Blunt body V-shaped jet exciter

    图  11  振荡射流的流场显示

    Figure  11.  Flow field of oscillating jet

    图  12  几种V形板装置示意图

    Figure  12.  Schematic diagram of several V-shaped plate devices

    图  13  平面射流撞击V形板[8]

    Figure  13.  Plane jet impinging v-shaped plate[8]

    图  14  椭圆型三构件流体振荡器数值模拟计算的速度、振荡室内的涡量和压力分布图[94]

    Figure  14.  Velocity, vorticity and pressure distribution in the oscillating chamber calculated by numerical simulation of the elliptic three-member fluid oscillator[94]

    图  15  3种自激振荡射流装置示意图

    Figure  15.  Schematic diagram of three self-excited oscillating jet devices

    图  16  自激振荡射流运动显示

    Figure  16.  Motion display of self-excited oscillating jet

    图  17  薄膜拍打诱导的振荡射流研究[17]

    Figure  17.  Picture of oscillating jet induced by film flapping[17]

    图  18  针对振荡射流的发展建议

    Figure  18.  Recommendations for the development of oscillating jets

  • [1] CERRETELLI C, KIRTLEY K. Boundary layer separation control with fluidic oscillators[J]. Journal of Turbomachinery, 2009, 131(4): 1. doi: 10.1115/1.3066242
    [2] 史志伟, 张海涛. 合成射流控制翼型分离的流动显示与PIV测量[J]. 实验流体力学, 2008, 22(3): 49–53. doi: 10.3969/j.issn.1672-9897.2008.03.011

    SHI Z W, ZHANG H T. Flow visualization and PIV measurement of airfoil separated flow control based on synthetic jet[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(3): 49–53. doi: 10.3969/j.issn.1672-9897.2008.03.011
    [3] 王冬, 俞刚. 煤油射流在超声速燃烧室中的实验研究[J]. 实验流体力学, 2005, 19(2): 11–13. doi: 10.3969/j.issn.1672-9897.2005.02.003

    WANG D, YU G. Investigation of kerosene jet spray in supersonic combustion[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2): 11–13. doi: 10.3969/j.issn.1672-9897.2005.02.003
    [4] VIDERGAR R, RAPSON D. Gyro-therm technology boosts cement kiln output, efficiency and cuts NOx emissions[J]. IEEE Cement Industry Technical Conference (Paper), 1997: 345-357.
    [5] CAMCI C, HERR F. Forced convection heat transfer enhancement using a self-oscillating impinging planar jet[J]. Journal of Heat Transfer, 2002, 124(4): 770–782. doi: 10.1115/1.1471521
    [6] HEWAKANDAMBY B N. A numerical study of heat transfer performance of oscillatory impinging jets[J]. International Journal of Heat and Mass Transfer, 2009, 52(1-2): 396–406. doi: 10.1016/j.ijheatmasstransfer.2008.07.004
    [7] LIN C K, HSIAO F B, SHEU S S. Flapping motion of a planar jet impinging on a V-shaped plate[J]. Journal of Aircraft, 1993, 30(3): 320–325. doi: 10.2514/3.46337
    [8] LEE G B, KUO T Y, WU W Y. A novel micromachined flow sensor using periodic flapping motion of a planar jet impinging on a V-shaped plate[J]. Experimental Thermal and Fluid Science, 2002, 26(5): 435–444. doi: 10.1016/S0894-1777(02)00155-3
    [9] YANG H F, HSU C M, HUANG R F. Flame behavior of bifurcated jets in a V-shaped bluff-body burner[J]. Journal of Marine Science and Technology, 2014, 22(5): 606–611. doi: 10.6119/JMST-013-1025-1
    [10] NATHAN G J, TURNS S R, BANDARU R V. The influence of fuel jet precession on the global properties and emissions of unconfined turbulent flames[J]. Combustion Science and Technology, 1996, 112(1): 211–230. doi: 10.1080/00102209608951958
    [11] NATHAN G. The enhanced mixing burner[D]. Adelaide: University of Adelaide, 1998.
    [12] VIETS H. Flip-flop jet nozzle[J]. AIAA Journal, 1975, 13(10): 1375–1379. doi: 10.2514/3.60550
    [13] SEO J H, ZHU C, MITTAL R. Flow physics and frequency scaling of sweeping jet fluidic oscillators[J]. AIAA Journal, 2018, 56(6): 2208–2219. doi: 10.2514/1J056563
    [14] RAMAN G, CORNELIUS D. Jet mixing control using excitation from miniature oscillating jets[J]. AIAA Journal, 1995, 33(2): 365–368. doi: 10.2514/3.12444
    [15] RAMAN G, RICE E J. Development of phased twin flip-flop jets[J]. Journal of Vibration and Acoustics, 1994, 116(3): 263–268. doi: 10.1115/1.2930423
    [16] MI J C, NATHAN G J, LUXTON R E. Mixing Characteristics of a flapping jet from a self-exciting nozzle[J]. Flow, Turbulence and Combustion, 2001, 67(1): 1–23. doi: 10.1023/A:1013544019463
    [17] XU M Y, WU M W, MI J C. A new type of self-excited flapping jets due to a flexible film at the nozzle exit[J]. Experimental Thermal and Fluid Science, 2019, 106: 226–233. doi: 10.1016/j.expthermflusci.2019.04.031
    [18] TOMAC M N. Novel impinging jets-based non-periodic sweeping jets[J]. Journal of Visualization, 2020, 23(3): 369–372. doi: 10.1007/s12650-020-00633-2
    [19] SCHNEIDER G M. Structures and turbulence characteristics in a precessing jet flow[D]. Adelaide: University of Adelaide, 1996.
    [20] SCHNEIDER G M, HOOPER J D, MUSGROVE A R, et al. Velocity and Reynolds stresses in a precessing jet flow[J]. Experiments in Fluids, 1997, 22(6): 489–495. doi: 10.1007/s003480050076
    [21] LUXTON R E, NATHAN G J. Mixing fluids: PCT/AU88/0014[P]. 1987-04.
    [22] ROCKWELL D, NAUDASCHER E. Review—self-sustaining oscillations of flow past cavities[J]. Journal of Fluids Engineering, 1978, 100(2): 152–165. doi: 10.1115/1.3448624
    [23] ROCKWELL D, NAUDASCHER E. Self-sustained oscillations of impinging free shear layers[J]. Annual Review of Fluid Mechanics, 1979, 11: 67–94. doi: 10.1146/annurev.fl.11.010179.000435
    [24] BILLANT P, CHOMAZ J M. Experimental evidence for a new instability of a vertical columnar vortex pair in a strongly stratified fluid[J]. Journal of Fluid Mechanics, 2000, 418: 167–188. doi: 10.1017/s0022112000001154
    [25] ZAMAN K B M Q. Flow field and near and far sound field of a subsonic jet[J]. Journal of Sound and Vibration, 1986, 106(1): 1–16. doi: 10.1016/S0022-460X(86)80170-5
    [26] JUNIPER M P. The effect of confinement on the stability of two-dimensional shear flows[J]. Journal of Fluid Mechanics, 2006, 565: 171. doi: 10.1017/s0022112006001558
    [27] EL-HAK M G. Flow control: passive, active, and reactive flow management[M]. Cambridge: Cambridge University Press, 2000.
    [28] CROW S C, CHAMPAGNE F H. Orderly structure in jet turbulence[J]. Journal of Fluid Mechanics, 1971, 48(3): 547–591. doi: 10.1017/s0022112071001745
    [29] SIMMONS J M, LAI J C S, PLATZER M F. Jet excitation by an oscillating vane[J]. AIAA Journal, 1981, 19(6): 673–676. doi: 10.2514/3.7810
    [30] FAVRE-MARINET M, BINDER G, HAC T V. Generation of oscillating jets[J]. Journal of Fluids Engineering, 1981, 103(4): 609–614. doi: 10.1115/1.3241780
    [31] DAVIS M R. Variable control of jet decay[J]. AIAA Journal, 1982, 20: 606–609. doi: 10.2514/3.7934
    [32] 杨军. 正反馈式射流振荡器性能研究及应用[D]. 大连: 大连理工大学, 2008.

    YANG J. Study on performance of feedback jet-oscillator and application[D]. Dalian: Dalian University of Technology, 2008. doi: 10.7666/d.y1248203
    [33] NATHAN G J, LUXTON R E. The entrainment and combustion characteristics and an axisymmetric, self-exciting, enhanced mixing nozzle[J]. ASME/JSME Therm. Eng. Proc, 1991, 5: 145–151.
    [34] 米建春, 李鹏飞. 低NOx自激振荡射流燃烧器[J]. 中国电机工程学报, 2010, 0309, 0080(008): 32–38.

    MI J C, LI P F. Low NOx self-excited oscillating-jet burners[J]. Proceedings of the CSEE, 2010, 0309, 0080(008): 32–38.
    [35] NATHAN G J, MI J C, ALWAHABI Z T, et al. Impacts of a jet’s exit flow pattern on mixing and combustion performance[J]. Progress in Energy and Combustion Science, 2006, 32(5-6): 496–538. doi: 10.1016/j.pecs.2006.07.002
    [36] HILL W G Jr, GREENE P R. Increased turbulent jet mixing rates obtained by self-excited acoustic oscillations[J]. Journal of Fluids Engineering, 1977, 99(3): 520–525. doi: 10.1115/1.3448833
    [37] HANDA T, FUJIMURA I. Fluidic oscillator actuated by a cavity at high frequencies[J]. Sensors and Actuators A: Physical, 2019, 300: 111676. doi: 10.1016/j.sna.2019.111676
    [38] WU M W, XU M Y, MI J C, et al. Mixing characteristics of a film-exciting flapping jet[J]. International Journal of Heat and Fluid Flow, 2020, 82: 108532. doi: 10.1016/j.ijheatfluidflow.2019.108532
    [39] KNOWLES K, SADDINGTON A J. A review of jet mixing enhancement for aircraft propulsion applications[J]. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering, 2006, 220(2): 103–127. doi: 10.1243/09544100g01605
    [40] RAGHU S. Fluidic oscillators for flow control[J]. Experiments in Fluids, 2013, 54(2): 1455. doi: 10.1007/s00348-012-1455-5
    [41] GREGORY J, TOMAC M N. A review of fluidic oscillator development and application for flow control[C]//Proc of the 43rd Fluid Dynamics Conference. 2013: 2474. doi: 10.2514/6.2013-2474
    [42] SMITH N L. The role of fuel-rich clusters in flame stabilization and NOx emission reduction with precessing jet pulverized fuel flames[J]. Symposium (International) on Combustion, 1998, 27(2): 3173–3179. doi: 10.1016/S0082-0784(98)80180-X
    [43] SMITH N L. The significance of particle clustering in pulverized coal flames[J]. Proceedings of the Combustion Institute, 2002, 29(1): 797–804. doi: 10.1016/S1540-7489(02)80102-X
    [44] REYNOLDS W C, PAREKH D E, JUVET P J D, et al. Bifurcating and blooming jets[J]. Annual Review of Fluid Mechanics, 2003, 35: 295–315. doi: 10.1146/annurev.fluid.35.101101.161128
    [45] LEE M, REYNOLDS W C. Bifurcating and blooming jets[J]. Am. Phys. Soc, 1982, 27: 21–23.
    [46] LONGMIRE E K, DUONG L H. Bifurcating jets generated with stepped and sawtooth nozzles[J]. Physics of Fluids, 1996, 8: 978–992. doi: 10.1063/1.868876
    [47] LEE M. Bifurcating and Blooming Jets [D]. Stanford: Stanford University, 1985.
    [48] GLEZER A, AMITAY M. Synthetic jets[J]. Annual review of fluid mechanics, 2002, 34: 503–529. doi: 10.1146/annurev.fluid.34.090501.094913
    [49] SMITH B L, GLEZER A. The formation and evolution of synthetic jets[J]. Physics of Fluids, 1998, 10(9): 2281–2297. doi: 10.1063/1.869828
    [50] 米建春, 拉塞尔·E.勒克斯顿, 格雷哈恩·J.内森. 振荡射流: CN1279756A[P]. 2001-01-10.
    [51] MI J C. Frequency characteristics of various oscillating jets[D]. Adelaide: University of Adelaide, 1996.
    [52] PERUMAL A K, WU Z, FAN D, et al. A hybrid artificial intelligence control of a turbulent jet: Reynolds number effect and scaling[J]. Journal of Fluid Mechanics, 2022, 942: A47. doi: 10.1017/jfm.2022.341
    [53] WU Z, WONG C W, ZHOU Y. Dual-input/single-output extremum-seeking system for jet control[J]. AIAA Journal, 2018, 56(4): 1463–1471. doi: 10.2514/1.J056675
    [54] FAN D W, WU Z, YANG H, et al. Modified extremum-seeking closed-loop system for jet mixing enhancement[J]. AIAA Journal, 2017, 55(11): 3891–3902. doi: 10.2514/1.J055644
    [55] YANG H, ZHOU Y, SO R M C, et al. Turbulent jet manipulation using two unsteady azimuthally separated radial minijets[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2191): 20160417. doi: 10.1098/rspa.2016.0417
    [56] 罗振兵, 夏智勋, 方丁酉, 等. 合成射流影响因素[J]. 国防科技大学学报, 2002, 24(3): 32–35. doi: 10.3969/j.issn.1001-2486.2002.03.008

    LUO Z B, XIA Z X, FANG D Y, et al. The factors influencing the synthetic jet[J]. Journal of National University of Defense Technology, 2002, 24(3): 32–35. doi: 10.3969/j.issn.1001-2486.2002.03.008
    [57] 罗振兵. 合成射流/合成双射流机理及其在射流矢量控制和微泵中的应用研究[D]. 长沙: 国防科学技术大学, 2006.

    LUO Z B. Mechanism of synthetic jet/synthetic double jet and its application in jet vector control and micropump[D]. Changsha: National University of Defense Technology, 2006.
    [58] WEN X, LI Z Y, ZHOU L L, et al. Flow dynamics of a fluidic oscillator with internal geometry variations[J]. Physics of Fluids, 2020, 32(7): 075111. doi: 10.1063/5.0012471
    [59] LI Z Y, LIU J J, ZHOU W W, et al. Experimental investigation of flow dynamics of sweeping jets impinging upon confined concave surfaces[J]. International Journal of Heat and Mass Transfer, 2019, 142: 118457. doi: 10.1016/j.ijheatmasstransfer.2019.118457
    [60] WEN X, LI Z Y, ZHOU W W, et al. Interaction of dual sweeping impinging jets at different Reynolds numbers[J]. Physics of Fluids, 2018, 30(10): 105105. doi: 10.1063/1.5054161
    [61] WEN X, LIU J J, KIM D, et al. Study on three-dimensional flow structures of a sweeping jet using time-resolved stereo particle image velocimetry[J]. Experimental Thermal and Fluid Science, 2020, 110: 109945. doi: 10.1016/j.expthermflusci.2019.109945
    [62] WOSZIDLO R, OSTERMANN F, SCHMIDT H J. Fundamental properties of fluidic oscillators for flow control applications[J]. AIAA Journal, 2019, 57(3): 978–992. doi: 10.2514/1.J056775
    [63] WU Z J, ZHAO W B, HU Z J, et al. Study on the spray characteristics and oscillation mechanism of a feedback-free internal impinging nozzle[J]. Flow, Turbulence and Combustion, 2021, 107(4): 979–1002. doi: 10.1007/s10494-021-00255-0
    [64] GUYOT D, PASCHEREIT C O, RAGHU S. Active combustion control using a fluidic oscillator for asymmetric fuel flow modulation[J]. International Journal of Flow Control, 2009, 1(2): 155–166. doi: 10.1260/175682509788913335
    [65] BOBUSCH B C, WOSZIDLO R, BERGADA J M, et al. Experimental study of the internal flow structures inside a fluidic oscillator[J]. Experiments in Fluids, 2013, 54(6): 1559. doi: 10.1007/s00348-013-1559-6
    [66] WOSZIDLO R, OSTERMANN F, NAYERI C N, et al. The time-resolved natural flow field of a fluidic oscillator[J]. Experiments in Fluids, 2015, 56(6): 125. doi: 10.1007/s00348-015-1993-8
    [67] HUANG R F, YANG H F, HSU C M. Flame behavior and thermal structure of combusting non-pulsating and pulsating plane jets[J]. Journal of Propulsion and Power, 2013, 29(1): 114–124.
    [68] ZELEKE D S, HUANG R F, HSU C M. Effects of Reynolds number on flow and mixing characteristics of a self-sustained swinging jet[J]. Journal of Turbulence, 2020, 21(8): 434–462. doi: 10.1080/14685248.2020.1817464
    [69] CATER J E, SORIA J. The evolution of round zero-net-mass-flux jets[J]. Journal of Fluid Mechanics, 2002, 472: 167–200. doi: 10.1017/s0022112002002264
    [70] BEN CHIEKH M, FERCHICHI M, BÉRA J C. Modified flapping jet for increased jet spreading using synthetic jets[J]. International Journal of Heat and Fluid Flow, 2011, 32(5): 865–875. doi: 10.1016/j.ijheatfluidflow.2011.06.004
    [71] BÉRA J C, MICHARD M, GROSJEAN N, et al. Flow analysis of two-dimensional pulsed jets by particle image velocimetry[J]. Experiments in Fluids, 2001, 31(5): 519–532. doi: 10.1007/s003480100314
    [72] LUO Z B, XIA Z X, XIE Y G. Jet vectoring control using a novel synthetic jet actuator[J]. Chinese Journal of Aeronautics, 2007, 20(3): 193–201. doi: 10.1016/S1000-9361(07)60032-6
    [73] TAMBURELLO D A, AMITAY M. Active control of a free jet using a synthetic jet[J]. International Journal of Heat and Fluid Flow, 2008, 29(4): 967–984. doi: 10.1016/j.ijheatfluidflow.2008.02.017
    [74] SMITH B L, GLEZER A. Jet vectoring using synthetic jets[J]. Journal of Fluid Mechanics, 2002, 458: 1–34. doi: 10.1017/s0022112001007406
    [75] MI J C, NATHAN G J. Statistical analysis of the velocity field in a mechanical precessing jet flow[J]. Physics of Fluids, 2005, 17(1): 015102. doi: 10.1063/1.1824138
    [76] SCHNEIDER G M, FROUD D, SYRED N, et al. Velocity measurements in a precessing jet flow using a three dimensional LDA system[J]. Experiments in Fluids, 1997, 23(2): 89–98. doi: 10.1007/s003480050089
    [77] NOBES D S. The generation of large-scale structures by jet precession[D]. Adelaide: University of Adelaide, 1997.
    [78] RAGHU S. Feedback-free fluidic oscillator and method: US 6253782B1[P]. 2001-07-03.
    [79] SPYROPOULOS C E. A sonic oscillator[C]//Proceedings of the Fluid Amplification Symposium. 1964.
    [80] STOUFFER R D, BOWER R. Fluidic flow meter with fiber optic sensor: US5827976[P]. 1998-10-27.
    [81] XIE W, HU Z, ZHAO W, et al. Experimental and numerical studies on spray characteristics of an internal oscillating nozzle[J]. Atomization and Sprays, 2019, 29(1):19-37.
    [82] SEELE R, TEWES P, WOSZIDLO R, et al. Discrete sweeping jets as tools for improving the performance of the V-22[J]. Journal of Aircraft, 2009, 46(6): 2098–2106. doi: 10.2514/1.43663
    [83] RAMAN G , HAILYE M , RICE E J. Flip-flop jet nozzle extended to supersonic flows [J]. AIAA Journal, 1993, 31(6): 1028-1035.
    [84] WOSZIDLO R, WYGNANSKI I. Parameters governing separation control with sweeping jet actuators[C]//Proc of the 29th AIAA Applied Aerodynamics Conference. 2011: 3172. doi: 10.2514/6.2011-3172
    [85] SEIFERT A, STALNOV O, SPERBER D, et al. Large trucks drag reduction using active flow control[C]//Proc of the 46th AIAA Aerospace Sciences Meeting and Exhibit. 2008: 743. doi: 10.2514/6.2008-743
    [86] WOSZIDLO R, STUMPER T, NAYERI C, et al. Experimental study on bluff body drag reduction with fluidic oscillators[C]//Proc of the 52nd Aerospace Sciences Meeting. 2014: 0403 doi: 10.2514/6.2014-0403
    [87] RAMAN G, RAGHU S. Miniature fluidic oscillators for flow and noise control - Transitioning from macro to micro fluidics[C]//Proc of the Fluids 2000 Conference and Exhibition. 2000: 2554. doi: 10.2514/6.2000-2554
    [88] RAMAN G, RAGHU S. Cavity resonance suppression using miniature fluidic oscillators[J]. AIAA Journal, 2004, 42(12): 2608–2612. doi: 10.2514/1.521
    [89] YANG H F, HSU C M, HUANG R F. Controlling Plane-Jet Flame by a Fluidic Oscillation Technique[J]. Journal of engineering for gas turbines and power: Transactions of the ASME, 2014, 136(4): 041501. doi: 10.1115/1.4025928
    [90] HOSSAIN M A, AGRICOLA L, AMERI A, et al. Effects of exit fan angle on the heat transfer performance of sweeping jet impingement[C]//Proc of the 2018 International Energy Conversion Engineering Conference. 2018: 4886. doi: 10.2514/6.2018-4886
    [91] OSTERMANN F, WOSZIDLO R, NAYERI C, et al. Experimental comparison between the flow field of two common fluidic oscillator designs[C]//Proc of the 53rd AIAA Aerospace Sciences Meeting. 2015: 0781. doi: 10.2514/6.2015-0781
    [92] HUANG R F, CHANG K T. Evolution and turbulence properties of self-sustained transversely oscillating flow induced by fluidic oscillator[J]. Journal of Fluids Engineering, 2007, 129(8): 1038–1047. doi: 10.1115/1.2746905
    [93] HUANG R F, CHANG K T. Oscillation frequency in wake of a vee gutter[J]. Journal of Propulsion and Power, 2004, 20(5): 871–878. doi: 10.2514/1.9431
    [94] UZOL O, CAMCI C. Experimental and computational visualization and frequency measurements of the jet oscillation inside a fluidic oscillator[J]. Journal of Visualization, 2002, 5(3): 263–272. doi: 10.1007/BF03182334
    [95] PLATZER M F, SIMMONS J M, BREMHORST K. Entrainment characteristics of unsteady subsonic jets[J]. AIAA Journal, 1978, 16(3): 282–284. doi: 10.2514/3.7523
    [96] LEE S K, LANSPEARY P V, NATHAN G J, et al. Low kinetic-energy loss oscillating-triangular-jet nozzles[J]. Experimental Thermal and Fluid Science, 2003, 27(5): 553–561. doi: 10.1016/s0894-1777(02)00269-8
    [97] MI J C, NATHAN G J. Self-excited jet-precession Strouhal number and its influence on downstream mixing field[J]. Journal of Fluids and Structures, 2004, 19(6): 851–862. doi: 10.1016/j.jfluidstructs.2004.04.006
    [98] WU M W, LI C W, ZHU C Q, et al. On flapping jets induced by a fluttering film and from circular nozzles of smooth contraction, orifice plate and long pipe[J]. Experiments in Fluids, 2022, 63(5): 81. doi: 10.1007/s00348-022-03426-5
    [99] MI J C, NATHAN G J. Scalar mixing characteristics of a self-excited flip-flop jet nozzle[C]//Proc of 14th Australasian Fluid Mechanics Conference. 2001, 817–820.
  • 加载中
图(18)
计量
  • 文章访问数:  294
  • HTML全文浏览量:  59
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-02
  • 修回日期:  2023-04-28
  • 录用日期:  2023-05-12
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日