留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多波长合成孔径彩虹折射仪

王鑫昊 吴迎春 徐东炎 吴学成

王鑫昊, 吴迎春, 徐东炎, 等. 多波长合成孔径彩虹折射仪[J]. 实验流体力学, 2023, 37(5): 34-40 doi: 10.11729/syltlx20230026
引用本文: 王鑫昊, 吴迎春, 徐东炎, 等. 多波长合成孔径彩虹折射仪[J]. 实验流体力学, 2023, 37(5): 34-40 doi: 10.11729/syltlx20230026
WANG X H, WU Y C, XU D Y, et al. Multi-wavelength synthetic aperture rainbow refractometer[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 34-40 doi: 10.11729/syltlx20230026
Citation: WANG X H, WU Y C, XU D Y, et al. Multi-wavelength synthetic aperture rainbow refractometer[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 34-40 doi: 10.11729/syltlx20230026

多波长合成孔径彩虹折射仪

doi: 10.11729/syltlx20230026
基金项目: 国家自然科学基金项目(52006193,52276166)
详细信息
    作者简介:

    王鑫昊:(1997—),男,满族,辽宁鞍山人,博士研究生。研究方向:结冰测量仪器与试验,彩虹折射测量技术,液滴测量技术。通信地址:浙江省杭州市西湖区浙大路38号浙江大学玉泉校区能源工程学院能源清洁利用国家重点实验室(310027)。E-mail:xinhaowang@zju.edu.cn

    通讯作者:

    E-mail:wuyingchun@zju.edu.cn

  • 中图分类号: TH74;TK311

Multi-wavelength synthetic aperture rainbow refractometer

  • 摘要: 随着大规模、大尺度试验环境需求的持续增加,测量仪器的应用范围不断扩大。彩虹折射测量技术是一种高效的云雾颗粒测量技术,受成像系统孔径的限制,其测量距离一般在50 cm以下。而合成孔径彩虹折射测量技术利用多个波长的激光照射单个液滴产生多个彩虹信号,并将多个彩虹信号合成为一个信号,经反演得到液滴参数,可以实现超远距离液滴参数测量,将测量距离增大至1.5 m左右。为满足从大型喷雾场外部测量内部液滴参数的需求,研发了多波长合成孔径彩虹折射仪。通过模拟,验证了多波长合成孔径彩虹折射仪能够实现远距离液滴测量;通过测量不同粒径的水滴和乙醇液滴,证明了多波长合成孔径彩虹折射仪运行的可行性和准确性。粒径和折射率测量误差分别在5 μm和8 × 10−4以内(水滴和乙醇液滴粒径范围为100 ~ 200 μm)。多波长合成孔径彩虹折射仪可以突破孔径限制,拓展工业应用场景,实现液滴粒径、折射率等多参数同时在线测量。
  • 图  1  双波长合成孔径彩虹折射测量系统光路图

    Figure  1.  The optical path of multi-wavelength synthetic aperture rainbow refractometry

    图  2  合成孔径彩虹信号及拟合曲线

    Figure  2.  The signal and fitting curves of synthetic aperture rainbow refractometry

    图  3  模拟验证的预设与反演结果对比

    Figure  3.  The comparison of results from simulation and inversion

    图  4  多波长合成孔径彩虹折射仪

    Figure  4.  Multi-wavelength synthetic aperture rainbow refractometer

    图  5  多波长合成孔径彩虹折射仪试验图片及处理

    Figure  5.  The image and process of multi-wavelength synthetic aperture rainbow refractometer

    图  6  多波长合成孔径彩虹折射仪测量结果

    Figure  6.  The measuring result of multi-wavelength synthetic aperture rainbow refractometer

  • [1] 战培国. 结冰云小水滴粒径测量设备综述[J]. 测控技术, 2020, 39(6): 1–7. doi: 10.19708/j.ckjs.2020.04.217

    ZHAN P G. Review of measuring instruments for water droplet sizing in icing clouds[J]. Measurement & Control Technology, 2020, 39(6): 1–7. doi: 10.19708/j.ckjs.2020.04.217
    [2] 郭学良, 于子平, 杨泽后, 等. 高性能机载云粒子成像仪研制及应用[J]. 气象学报, 2020, 78(6): 1050–1064. doi: 10.11676/qxxb2017.049

    GUO X L, YU Z P, YANG Z H, et al. Development and application of the high-performance airborne cloud particle imager[J]. Acta Meteorologica Sinica, 2020, 78(6): 1050–1064. doi: 10.11676/qxxb2017.049
    [3] 陈舒越, 郭向东, 王梓旭, 等. 结冰风洞过冷大水滴粒径测量初步研究[J]. 实验流体力学, 2021, 35(3): 22–29. doi: 10.11729/syltlx20200104

    CHEN S Y, GUO X D, WANG Z X, et al. Preliminary research on size measurement of supercooled large droplet in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 22–29. doi: 10.11729/syltlx20200104
    [4] LANCE S, BROCK C A, ROGERS D, et al. Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC[J]. Atmospheric Measurement Techniques, 2010, 3(6): 1683–1706. doi: 10.5194/amt-3-1683-2010
    [5] PORCHERON E, LEMAITRE P, VAN BEECK J, et al. Development of a spectrometer for airborne measurement of droplet sizes in clouds[J]. Journal of the European Optical Society: Rapid Publications, 2015, 10: 15030. doi: 10.2971/jeos.2015.15030
    [6] BEALS M J, FUGAL J P, SHAW R A, et al. Holographic measurements of inhomogeneous cloud mixing at the centimeter scale[J]. Science, 2015, 350(6256): 87–90. doi: 10.1126/science.aab0751
    [7] STRUK P M, KING M C, BARTKUS T P, et al. Ice crystal icing physics study using a NACA 0012 airfoil at the national research council of Canada’s research altitude test facility[C]//Proc of the 2018 Atmospheric and Space Environments Conference. 2018. doi: 10.2514/6.2018-4224
    [8] ROTH N, ANDERS K, FROHN A. Refractive-index measurements for the correction of particle sizing methods[J]. Applied Optics, 1991, 30(33): 4960–4965. doi: 10.1364/ao.30.004960
    [9] WU Y C, LI H P, WU X C, et al. Change of evaporation rate of single monocomponent droplet with temperature using time-resolved phase rainbow refractometry[J]. Proceed-ings of the Combustion Institute, 2019, 37(3): 3211–3218. doi: 10.1016/j.proci.2018.09.026
    [10] LI C, LV Q M, LI N, et al. Planar rainbow refractometry[J]. Optics Letters, 2021, 46(23): 5898–5901. doi: 10.1364/OL.444013
    [11] WU Y C, CRUA C, LI H P, et al. Simultaneous measurement of monocomponent droplet temperature/refractive index, size and evaporation rate with phase rainbow refractometry[J]. Journal of Quantitative Spectro-scopy and Radiative Transfer, 2018, 214: 146–157. doi: 10.1016/j.jqsrt.2018.04.034
    [12] VAN BEECK J P, RIETHMULLER M L. Nonintrusive measurements of temperature and size of single falling raindrops[J]. Applied Optics, 1995, 34(10): 1633–1639. doi: 10.1364/AO.34.001633
    [13] WU Y C, LI C, CAO J Z, et al. Mixing ratio measurement in multiple sprays with global rainbow refractometry[J]. Experimental Thermal and Fluid Science, 2018, 98: 309–316. doi: 10.1016/j.expthermflusci.2018.06.004
    [14] LV Q M, WU Y C, LI C, et al. Surface tension and viscosity measurement of oscillating droplet using rainbow refracto-metry[J]. Optics Letters, 2020, 45(24): 6687–6690. doi: 10.1364/OL.412498
    [15] 曹建政, 李灿, 吴迎春, 等. 紧凑型彩虹折射仪的开发与实验测试[J]. 激光与光电子学进展, 2019, 56(10): 101201. doi: 10.3788/LOP56.101201

    CAO J Z, LI C, WU Y C, et al. Development and experimental test of compact rainbow refractometer[J]. Laser & Optoelectronics Progress, 2019, 56(10): 101201. doi: 10.3788/LOP56.101201
    [16] WU X C, LI C, CAO K L, et al. Instrumentation of rainbow refractometry: portable design and performance testing[J]. Laser Physics, 2018, 28(8): 085604. doi: 10.1088/1555-6611/aac361
    [17] WANG X H, WU Y C, XU D Y, et al. Synthetic aperture rainbow refractometry[J]. Optics Letters, 2022, 47(20): 5272–5275. doi: 10.1364/OL.471103
    [18] WU Y C, WANG X H, XU D Y, et al. Synthetic aperture rainbow refractometry for droplet refractive index and size measurement with long range: standard and global modes[J]. Powder Technology, 2022, 411: 117873. doi: 10.1016/j.powtec.2022.117873
    [19] NUSSENZVEIG H M. High-frequency scattering by a transparent sphere. II. theory of the rainbow and the glory[J]. Journal of Mathematical Physics, 1969, 10(1): 125–176. doi: 10.1063/1.1664747
    [20] KEDENBURG S, VIEWEG M, GISSIBL T, et al. Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region[J]. Optical Materials Express, 2012, 2(11): 1588–1611. doi: 10.1364/ome.2.001588
    [21] NUSSENZVEIG H M, MARSTON P L. Diffraction effects in semiclassical scattering[J]. The Journal of the Acoustical Society of America, 1993, 94(2): 1175. doi: 10.1121/1.406930
    [22] ROWE P M, FERGODA M, NESHYBA S. Temperature-dependent optical properties of liquid water from 240 to 298 K[J]. Journal of Geophysical Research:Atmospheres, 2020, 125(17): 032624. doi: 10.1029/2020jd032624
    [23] SANI E, DELL'ORO A. Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared[J]. Optical Materials, 2016, 60: 137–141. doi: 10.1016/j.optmat.2016.06.041
    [24] HALE G M, QUERRY M R. Optical constants of water in the 200 nm to 200 micrometer wavelength region[J]. Applied Optics, 1973, 12(3): 555–563. doi: 10.1364/ao.12.000555
  • 加载中
图(6)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  98
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-06
  • 修回日期:  2023-06-12
  • 录用日期:  2023-07-18
  • 网络出版日期:  2023-08-31
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日