留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿生学覆羽厚度对机翼失速控制效果的实验研究

黄逸军 巩绪安 马兴宇 姜楠

黄逸军, 巩绪安, 马兴宇, 等. 仿生学覆羽厚度对机翼失速控制效果的实验研究[J]. 实验流体力学, 2023, 37(4): 105-115 doi: 10.11729/syltlx20230028
引用本文: 黄逸军, 巩绪安, 马兴宇, 等. 仿生学覆羽厚度对机翼失速控制效果的实验研究[J]. 实验流体力学, 2023, 37(4): 105-115 doi: 10.11729/syltlx20230028
HUANG Y J, GONG X A, MA X Y, et al. Experimental study on the thickness dependence of bionics coverts for the wing stall control[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 105-115 doi: 10.11729/syltlx20230028
Citation: HUANG Y J, GONG X A, MA X Y, et al. Experimental study on the thickness dependence of bionics coverts for the wing stall control[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 105-115 doi: 10.11729/syltlx20230028

仿生学覆羽厚度对机翼失速控制效果的实验研究

doi: 10.11729/syltlx20230028
基金项目: 国家自然科学基金项目(11902218,11972251,12172242,12272265,12202310);翼型、叶栅空气动力学重点实验室稳定支持经费项目(61422010301);西南交通大学牵引动力国家重点实验室开放课题项目(TPL2306);中德合作研究小组计划项目(GZ1575);天津市研究生科研创新项目(2022SKY058)
详细信息
    作者简介:

    黄逸军:(1996—),男,湖南郴州人,硕士研究生。研究方向:基于柔性锯齿装置的主动与被动流动分离控制技术。通信地址:天津市天津大学北洋园校区36楼412号(300354)。E-mail:huangyijun@tju.edu.cn

    通讯作者:

    E-mail:xingyuma@tju.edu.cn

  • 中图分类号: O357

Experimental study on the thickness dependence of bionics coverts for the wing stall control

  • 摘要: 受鸟类翼面覆羽结构特点的启发,在前期仿生流动控制工作基础上,本文设计了不同厚度的柔性锯齿型人工覆羽,将其分别安装于NACA0018平直机翼上翼面不同弦长位置,通过实验考察大迎角条件下流动分离控制效果。实验在天津大学低湍流度风洞进行,采用坐标架对机翼尾流区进行扫掠测量,使用热线风速仪获取尾流区的平均速度和脉动速度信息,并使用高速相机拍摄人工覆羽的运动情况。通过平均速度分布、脉动速度均方根曲线、功率谱密度、小波能谱和小波等值云图等对不同厚度覆羽的流动分离控制效果进行对比分析。实验结果表明,对于小厚度覆羽:安装在机翼前缘附近时,能有效减小前缘剪切层和机翼上表面之间的距离,这是由于覆羽自适应振动促进了低频大尺度相干结构向高频小尺度相干结构的转化;安装在机翼尾缘附近时,机翼周围流场无明显变化。相反,对于大厚度覆羽,覆羽阻碍分离回流区沿机翼表面向前缘发展,在靠近机翼尾缘时,流动分离控制效果较好。此外,本文还结合粒子图像测速技术绘制了覆羽的运动情况和周围流场流动示意图,验证了不同工况下人工覆羽的流动分离控制效果,对比分析了不同厚度覆羽实现流动分离控制的机理。
  • 图  1  实验装置二维剖面图

    Figure  1.  Two dimensional diagram of experimental setup

    图  2  人工覆羽装置设计尺寸和安装位置

    Figure  2.  Design size of artificial coverts and its installation location

    图  3  CLEAN组和A组尾流区平均速度剖面

    Figure  3.  Average velocity profile of cases CLEAN and A1 to A6

    图  4  CLEAN和B组尾流区平均速度剖面

    Figure  4.  Average velocity profile of cases CLEAN and B1 to B6

    图  5  CLEAN组和A组的脉动速度均方根曲线

    Figure  5.  Curves of root-mean-square fluctuation velocity values of cases CLEAN and A1 to A6

    图  6  CLEAN组和B组的脉动速度均方根曲线

    Figure  6.  Curves of root-mean-square fluctuation velocity values of cases CLEAN and B1 to B6

    图  7  20%弦长位置处平均速度场等高线图

    Figure  7.  The contour of mean velocity field at 20% chord length

    图  8  20%弦长位置的涡量场等高线

    Figure  8.  The contour of the vorticity field at 20% chord length

    图  9  B4组覆羽周围流场等高线

    Figure  9.  The contour of the flow field around the artificial covert in B4

    图  10  CLEAN组流场示意图

    Figure  10.  Schematic figure of the flow field of CLEAN

    图  11  A2组覆羽周围流场运动情况

    Figure  11.  The movement of the coverts and the flow field of A2

    图  12  B4组覆羽与流场运动情况

    Figure  12.  The movement of the coverts and the flow field of B4

    图  13  CLEAN组和A3组的PSD曲线

    Figure  13.  PSD curves of cases CLEAN and A3

    图  14  CLEAN组和B4、B5组的PSD曲线

    Figure  14.  Power spectral density curves of cases B4、B5 and CLEAN

    图  15  CLEAN组和B1~B5组的PSD曲线

    Figure  15.  Power spectral density curves of cases CLEAN and B1 to B5

    图  16  CLEAN组和B5组的PSD曲线和相干性曲线

    Figure  16.  Power spectral density curves and coherence curves of cases B5 and CLEAN

    图  17  CLEAN和B1~B5组脉动速度均方根峰值的小波能谱

    Figure  17.  Wavelet energy spectrum for the peak fluctuation point of the root mean square fluctuation velocity values of cases CLEAN and B1 to B5

    图  18  CLEAN组和B1~B5组前缘剪切层峰值的小波系数等值云图

    Figure  18.  Wavelet coefficient contour for the peak fluctuation point in the leading-edge shear layer of cases CLEAN and B1 to B5

    表  1  热线测量点位对应坐标

    Table  1.   Coordinates of hot wire measurement points

    测量点位y/c测量点位y/c
    1 −0.233 11 0.200
    2 −0.167 12 0.233
    3 −0.117 13 0.267
    4 −0.083 14 0.300
    5 −0.050 15 0.333
    6 0 16 0.367
    7 0.050 17 0.400
    8 0.100 18 0.450
    9 0.133 19 0.500
    10 0.167 20 0.600
    下载: 导出CSV

    表  2  不同工况下人工覆羽装置安装位置

    Table  2.   Installation location of artificial coverts in different cases

    工况安装位置工况安装位置
    A1 0.1c B1 0.1c
    A2 0.2c B2 0.2c
    A3 0.3c B3 0.3c
    A4 0.6c B4 0.6c
    A5 0.8c B5 0.8c
    A6 1.0c B6 1.0c
    下载: 导出CSV
  • [1] HAND B, KELLY G, CASHMAN A. Numerical simulation of a vertical axis wind turbine airfoil experiencing dynamic stall at high Reynolds numbers[J]. Computers & Fluids, 2017, 149: 12–30. doi: 10.1016/j.compfluid.2017.02.021
    [2] 乔渭阳, 仝帆, 陈伟杰, 等. 仿生学气动噪声控制研究的历史、现状和进展[J]. 空气动力学学报, 2018, 36(1): 98–121. doi: 10.7638/kqdlxxb-2017.0162

    QIAO W Y, TONG F, CHEN W J, et al. Review on aerodynamic noise reduction with bionic configuration[J]. Acta Aerodynamica Sinica, 2018, 36(1): 98–121. doi: 10.7638/kqdlxxb-2017.0162
    [3] GRAHAM R R. The silent flight of owls[J]. The Journal of the Royal Aeronautical Society, 1934, 38(286): 837–843. doi: 10.1017/s0368393100109915
    [4] HOWE M S. Noise produced by a sawtooth trailing edge[J]. The Journal of the Acoustical Society of America, 1991, 90(1): 482–487. doi: 10.1121/1.401273
    [5] HOWE M S. Aerodynamic noise of a serrated trailing edge[J]. Journal of Fluids and Structures, 1991, 5(1): 33–45. doi: 10.1016/0889-9746(91)80010-b
    [6] CHEN K, LIU Q P, LIAO G H, et al. The sound suppression characteristics of wing feather of owl (Bubo bubo)[J]. Journal of Bionic Engineering, 2012, 9(2): 192–199. doi: 10.1016/S1672-6529(11)60109-1
    [7] WINZEN A, ROIDL B, KLÄN S, et al. Particle-image velocimetry and force measurements of leading-edge serrations on owl-based wing models[J]. Journal of Bionic Engineering, 2014, 11(3): 423–438. doi: 10.1016/s1672-6529(14)60055-x
    [8] WANG L, LIU X M. Aeroacoustic investigation of asymmetric oblique trailing-edge serrations enlighted by owl wings[J]. Physics of Fluids, 2022, 34(1): 015113. doi: 10.1063/5.0076272
    [9] 杨景茹, 杨爱玲, 陈二云, 等. 锯齿尾缘叶片气动特性和绕流流场的数值研究[J]. 航空动力学报, 2017, 32(4): 900–908. doi: 10.13224/j.cnki.jasp.2017.04.015

    YANG J R, YANG A L, CHEN E Y, et al. Numerical research on aerodynamic characteristics and flow fields of airfoil with serrated trailing edge[J]. Journal of Aerospace Power, 2017, 32(4): 900–908. doi: 10.13224/j.cnki.jasp.2017.04.015
    [10] AVALLONE F, PRÖBSTING S, RAGNI D. Three-dimensional flow field over a trailing-edge serration and implications on broadband noise[J]. Physics of Fluids, 2016, 28(11): 117101. doi: 10.1063/1.4966633
    [11] JONES L E, SANDBERG R D. Acoustic and hydrodynamic analysis of the flow around an aerofoil with trailing-edge serrations[J]. Journal of Fluid Mechanics, 2012, 706: 295–322. doi: 10.1017/jfm.2012.254
    [12] ARCE C, RAGNI D, PRÖBSTING S, et al. Flow field around a serrated trailing edge at incidence[C]//Proc of the 33rd Wind Energy Symposium, Kissimmee. 2015: 0991. doi: 10.2514/6.2015-0991
    [13] BRÜCKER C, WEIDNER C. Influence of self-adaptive hairy flaps on the stall delay of an airfoil in ramp-up motion[J]. Journal of Fluids and Structures, 2014, 47: 31–40. doi: 10.1016/j.jfluidstructs.2014.02.014
    [14] 李彪辉, 范子椰, 刘丽霞, 等. 柔性旋涡发生器对翼型前缘分离的自适应控制[J]. 气体物理, 2020, 5(5): 56–62. doi: 10.19527/j.cnki.2096-1642.0798

    LI B H, FAN Z Y, LIU L X, et al. Adaptive control of wing leading edge separation by flexible vortex generator[J]. Physics of Gases, 2020, 5(5): 56–62. doi: 10.19527/j.cnki.2096-1642.0798
    [15] 巩绪安, 张鑫, 马兴宇, 等. 柔性锯齿形尾缘流动分离控制实验的多尺度相干结构研究[J]. 实验流体力学, 2022, 36(6): 19–27. doi: 10.11729/syltlx20210041

    GONG X A, ZHANG X, MA X Y, et al. Experimental study on flow separation control by flexible serrated trailing edge based on multi-scale coherent structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 19–27. doi: 10.11729/syltlx20210041
    [16] 巩绪安, 张鑫, 马兴宇, 等. 仿生学覆羽控制翼型流动分离实验[J]. 空气动力学学报, 2021, 39(6): 184–195. doi: 10.7638/kqdlxxb-2021.0177

    GONG X A, ZHANG X, MA X Y, et al. Experiments on flow separation control with bionic coverts[J]. Acta Aerodynamica Sinica, 2021, 39(6): 184–195. doi: 10.7638/kqdlxxb-2021.0177
    [17] MA X Y, GONG X A, TANG Z Q, et al. Control of leading-edge separation on bioinspired airfoil with fluttering coverts[J]. Physical Review E, 2022, 105(2): 025107. doi: 10.1103/physreve.105.025107
    [18] LAMBERT A, YARUSEVYCH S. Effect of angle of attack on vortex dynamics in laminar separation bubbles[J]. Physics of Fluids, 2019, 31(6): 064105. doi: 10.1063/1.5100158
    [19] 张蓉竹, 蔡邦维, 杨春林, 等. 功率谱密度的数值计算方法[J]. 强激光与粒子束, 2000, 12(6): 661–664.

    ZHANG R Z, CAI B W, YANG C L, et al. Numerical method of the power spectral density[J]. High Power Laser and Particle Beams, 2000, 12(6): 661–664.
    [20] 赵瑞珍. 小波理论及其在图像、信号处理中的算法研究[D]. 西安: 西安电子科技大学, 2001.

    ZHAO R Z. Wavelet theory and its algorithm research in image and signal processing[D]. Xi'an: Xidian University, 2001.
    [21] 衡彤. 小波分析及其应用研究[D]. 成都: 四川大学, 2001.

    HENG T. Research on wavelet analysis and its application[D]. Chengdu: Sichuan University, 2001.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  45
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-09
  • 修回日期:  2023-05-27
  • 录用日期:  2023-06-27
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日