留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红外分子标记测速法

胡臻 宋子豪 王巍添 朱宁 超星

胡臻, 宋子豪, 王巍添, 等. 红外分子标记测速法[J]. 实验流体力学, 2023, 37(5): 41-48 doi: 10.11729/syltlx20230036
引用本文: 胡臻, 宋子豪, 王巍添, 等. 红外分子标记测速法[J]. 实验流体力学, 2023, 37(5): 41-48 doi: 10.11729/syltlx20230036
HU Z, SONG Z H, WANG W T, et al. Infrared molecular tagging velocimetry [J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 41-48 doi: 10.11729/syltlx20230036
Citation: HU Z, SONG Z H, WANG W T, et al. Infrared molecular tagging velocimetry [J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 41-48 doi: 10.11729/syltlx20230036

红外分子标记测速法

doi: 10.11729/syltlx20230036
基金项目: 国家自然科学基金项目(51976105);航空发动机及燃气轮机基础研究项目(J2019-III-0018-0062);国家重点研发计划项目(2022YFB4003902)
详细信息
    作者简介:

    胡臻:(1999—),男,侗族,湖南株洲人,博士研究生。研究方向:燃烧场和流场中的光学诊断技术。通信地址:北京市海淀区清华园1号清华大学李兆基科技大楼B536(100084)。E-mail:hu-z21@mails.tsinghua.edu.cn

    通讯作者:

    E-mail:chaox6@tsinghua.edu.cn

  • 中图分类号: O433

Infrared molecular tagging velocimetry

  • 摘要: 分子标记测速法(MTV)和粒子成像测速法(PIV)常被用于流动显示和流场成像测量,但在示踪粒子跟随性差、示踪粒子分布不均匀时,示踪粒子的引入会给PIV带来速度测量系统误差,而不需引入示踪粒子的MTV因荧光寿命长度限制,主要应用在高速和超声速流动测量中。为了发展无需示踪粒子、可适用于低速气流场的二维流速成像方法,本文介绍了一种基于激光诱导红外荧光的新型分子标记测速法,并在二氧化碳气体轴对称湍流射流中进行了速度测量与验证。在红外分子标记测速法中,通过红外脉冲激光选择性激发气体小分子的共振振动能级跃迁实现分子的标记,随后通过红外相机对不同时刻下跟随流场流动的激发态分子记录其发射荧光分布,进而处理得到流动速度场信息。通过考虑分子振动能量传递过程模型、有限荧光寿命、横向速度分量和分子扩散运动对荧光分布的影响,实现从荧光分布图像定量获取速度场分布。将该方法应用于5~51 m/s速度的二氧化碳湍流射流中,得到了射流轴向速度的径向分布,速度测量的相对不确定度优于8%,径向空间分辨率达到107 μm,且该速度分布与湍流射流理论结果及前人实验测量结果符合较好。利用该方法分辨了射流在不同轴向位置的径向速度分布,观察到了射流从势核区到充分发展区的演变。利用该方法可以获得低速气流场的高分辨瞬时速度成像,后续通过提高红外激光的脉冲功率、激发效率和重复频率,可以进一步提高该方法的测量精度、空间分辨率和时间分辨率,从而有潜力在近壁面流动、微尺度流动和大梯度流动等粒子示踪不适合用场景中提供定量流场测量的有效途径。
  • 图  1  红外MTV中振动能量跃迁过程示意图

    Figure  1.  A schematic diagram of vibrational energy transition in infrared MTV

    图  2  不同时刻的CO2荧光分布随流体运动的变化

    Figure  2.  The evolution of CO2 fluorescence distribution with fluid motion at different times

    图  3  红外MTV测量实验装置与射流喷嘴装置

    Figure  3.  The experimental setup of infrared MTV and jet nozzle

    图  4  激发光、相机时序图与曝光窗口示意图

    Figure  4.  Sequence diagram of excitation light and camera, and exposure window diagram

    图  5  激光通过N2和CO2气体池后的透射光强

    Figure  5.  Transmitted laser intensity through N2 and CO2 gas cell

    图  6  红外相机成像尺度标定

    Figure  6.  Image calibration of infrared camera

    图  7  Re = 2500射流中不同轴向位置的红外MTV标记位置测量

    Figure  7.  Infrared MTV marked position measurement at different axial positions in jet at Re = 2500

    图  8  Re = 2500射流中不同轴向位置的轴向速度径向分布测量结果

    Figure  8.  Measured radial distribution of axial velocity at different axial positions in jet at Re = 2500

    图  9  不同雷诺数工况射流在自相似区的轴向速度测量结果及理论结果[25]对比

    Figure  9.  Comparison of measured and theoretical results[25] of axial velocity distribution at self-similar zone of jet flow, under different Reynolds number conditions

  • [1] 杨富荣, 陈力, 闫博, 等. 干涉瑞利散射测速技术在跨超声速风洞的湍流度测试应用研究[J]. 实验流体力学, 2018, 32(3): 82–86. doi: 10.11729/syltlx20170103

    YANG F R, CHEN L, YAN B, et al. Measurement of turbulence velocity fluctuations in transonic wind tunnel using Interferometric Rayleigh Scattering diagnostic technique[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 82–86. doi: 10.11729/syltlx20170103
    [2] 李晓辉, 王宏伟, 黄湛, 等. 层析粒子图像测速技术研究进展[J]. 实验流体力学, 2021, 35(1): 86–96. doi: 10.11729/syltlx20190160

    LI X H, WANG H W, HUANG Z, et al. Research advances of tomographic particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 86–96. doi: 10.11729/syltlx20190160
    [3] 吴戈, 李韵, 万明罡, 等. 平面激光诱导荧光技术在超声速燃烧火焰结构可视化中的应用[J]. 实验流体力学, 2020, 34(3): 70–77. doi: 10.11729/syltlx20190168

    WU G, LI Y, WAN M G, et al. Visualization of flame structure in supersonic combustion by Planar Laser Induced Fluorescence technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 70–77. doi: 10.11729/syltlx20190168
    [4] OJO A O, FOND B, VAN WACHEM B G M, et al. Thermographic laser Doppler velocimetry[J]. Optics Letters, 2015, 40(20): 4759–4762. doi: 10.1364/ol.40.004759
    [5] GU C L, ZOU X, ZUO Z, et al. Doppler velocimeter based on dual-comb absorption spectroscopy[J]. Photonics Research, 2020, 8(12): 1895–1903. doi: 10.1364/prj.398876
    [6] LI F B, ZHANG H B, BAI B F. A review of molecular tagging measurement technique[J]. Measurement, 2021, 171: 108790. doi: 10.1016/j.measurement.2020.108790
    [7] WANG H P, YANG Z X, LI B L, et al. Predicting the near-wall velocity of wall turbulence using a neural network for particle image velocimetry[J]. Physics of Fluids, 2020, 32(11): 115105. doi: 10.1063/5.0023786
    [8] 许德辰, 张悦, 刘欣乐, 等. 基于粒子追踪测速的壁面摩擦应力测量[J]. 实验流体力学, 2022, 36(2): 131–138. doi: 10.11729/syltlx20210156

    XU D C, ZHANG Y, LIU X L, et al. Measurement of wall-shear stress via micro-particle tracking velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 131–138. doi: 10.11729/syltlx20210156
    [9] TIEN W H, DABIRI D, HOVE J R. Color-coded three-dimensional micro particle tracking velocimetry and application to micro backward-facing step flows[J]. Experiments in Fluids, 2014, 55(3): 1684. doi: 10.1007/s00348-014-1684-x
    [10] RAFFEL M, WILLERT C E, SCARANO F, et al. Particle image velocimetry: a practical guide[M]. Array Cham: Springer, 2018.
    [11] RAGNI D, SCHRIJER F, VAN OUDHEUSDEN B W, et al. Particle tracer response across shocks measured by PIV[J]. Experiments in Fluids, 2011, 50(1): 53–64. doi: 10.1007/s00348-010-0892-2
    [12] SAMIMY M, LELE S K. Motion of particles with inertia in a compressible free shear layer[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(8): 1915–1923. doi: 10.1063/1.857921
    [13] MOLEZZI M J, DUTTON J C. Application of particle image velocimetry in high-speed separated flows[J]. AIAA Journal, 1993, 31(3): 438–446. doi: 10.2514/3.11349
    [14] PAN F, SÁNCHEZ-GONZÁLEZ R, MCILVOY M H, et al. Simultaneous three-dimensional velocimetry and thermo-metry in gaseous flows using the stereoscopic vibrationally excited nitric oxide monitoring technique[J]. Optics Letters, 2016, 41(7): 1376–1379. doi: 10.1364/ol.41.001376
    [15] YE J F, SHI D Y, SONG W Y, et al. Investigation of turbulence flow characteristics in a dual-mode scramjet combustor using hydroxyl tagging velocimetry[J]. Acta Astronautica, 2019, 157: 276–281. doi: 10.1016/j.actaastro.2018.12.040
    [16] BATHEL B, JOHANSEN C, DANEHY P, et al. Review of fluorescence-based velocimetry techniques to study high-speed compressible flows[C]//Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013. doi: 10.2514/6.2013-339https://doi.org/
    [17] CHEN F, LI H X, HU H. Molecular tagging techniques and their applications to the study of complex thermal flow phenomena[J]. Acta Mechanica Sinica, 2015, 31(4): 425–445. doi: 10.1007/s10409-015-0464-z
    [18] MIRZAEI M, DAM N J, VAN DE WATER W. Molecular tagging velocimetry in turbulence using biacetyl[J]. Physical Review E, 2012, 86(4): 046318. doi: 10.1103/physreve.86.046318
    [19] 杨文斌, 陈力, 闫博, 等. 基于飞秒激光电子激发标记测速技术的剪切流场速度测量[J]. 实验流体力学, 2022, 36(4): 94–102. doi: 10.11729/syltlx20210060

    YANG W B, CHEN L, YAN B, et al. Transient velocity measurement of shear flow using Femtosecond Laser Electronic Excitation Tagging[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 94–102. doi: 10.11729/syltlx20210060
    [20] MILES R, COHEN C, CONNORS J, et al. Velocity measurements by vibrational tagging and fluorescent probing of oxygen[J]. Optics Letters, 1987, 12(11): 861–863. doi: 10.1364/OL.12.000861
    [21] BALL C G, FELLOUAH H, POLLARD A. The flow field in turbulent round free jets[J]. Progress in Aerospace Sciences, 2012, 50: 1–26. doi: 10.1016/j.paerosci.2011.10.002
    [22] KAUSHIK M, KUMAR R, HUMRUTHA G. Review of computational fluid dynamics studies on jets[J]. American Journal of Fluid Dynamics, 2015, 5(3A): 1–11. doi: 10.5923/s.ajfd.201501.01
    [23] ABRAMOVICH G N, GIRSHOVICH T A, KRASHE-NINNIKOV S I, et al. The theory of turbulent jets[M]. Moscow: MIT Press, 1984.
    [24] RAJARATNAM N. Turbulent jets[M]. New York: Elsevier, 1976.
    [25] SONG Z H, WANG W T, ZHU N, et al. Gas velocimetry based on infrared laser-induced fluorescence[J]. Physics of Fluids, 2021, 33(12): 125126. doi: 10.1063/5.0074367
  • 加载中
图(9)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  89
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-17
  • 修回日期:  2023-06-27
  • 录用日期:  2023-07-11
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日