留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲信号的奇异性分布熵特征分析

王璐 陈志菲 陈希 招启军 鲍明

王璐, 陈志菲, 陈希, 等. 脉冲信号的奇异性分布熵特征分析[J]. 实验流体力学, 2024, 38(1): 91-102 doi: 10.11729/syltlx20230037
引用本文: 王璐, 陈志菲, 陈希, 等. 脉冲信号的奇异性分布熵特征分析[J]. 实验流体力学, 2024, 38(1): 91-102 doi: 10.11729/syltlx20230037
WANG L, CHEN Z F, CHEN X, et al. Singularity distribution entropy analysis of impulsive acoustic signals[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 91-102 doi: 10.11729/syltlx20230037
Citation: WANG L, CHEN Z F, CHEN X, et al. Singularity distribution entropy analysis of impulsive acoustic signals[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 91-102 doi: 10.11729/syltlx20230037

脉冲信号的奇异性分布熵特征分析

doi: 10.11729/syltlx20230037
基金项目: 国家自然科学基金项目(11774379)
详细信息
    作者简介:

    王璐:(1993—),女,河北唐山人,博士,讲师。研究方向:直升机噪声信号分析,信号特征分析。E-mail:wanglu171@mails.ucas.ac.cn

    通讯作者:

    E-mail:baoming@mail.ioa.ac.cn

  • 中图分类号: TN912

Singularity distribution entropy analysis of impulsive acoustic signals

  • 摘要: 为了对低信噪比复杂环境下脉冲信号的奇异性差异进行有效的分析和标定,提出了一种基于模极大值理论的奇异性分布熵特征分析模型。首先对脉冲信号进行归一化并进行小波变换,计算各尺度下模极大值及其特定分布,可以体现具有奇异性差异的模极大值曲线族。为定量描述这种差异性,用熵值表达构成模极大值曲线族的模极大值点分布,并构建能有效分析脉冲信号奇异性差异的奇异性分布熵特征模型。该模型能对低噪比下信号的奇异性差异进行刻画。实验结果表明,在信噪比为−6 dB的环境下对典型的直升机脉冲信号(桨/涡干扰信号和高速脉冲信号)进行分析,能够得到89.25%和87.63%的正确率。
  • 图  1  BVI和HSI信号的时域模拟信号、模极大值曲线及其衰减曲线图

    Figure  1.  Time domain analog signal of BVI and HSI signal, mode maximum curve and its attenuation curve

    图  2  一阶高斯小波基函数$\varphi (t)$和其原函数$\theta (t)$的时域图

    Figure  2.  Time domain diagram of the first order Gaussian wavelet basis function $\varphi (t)$ and its antiderivative function $\theta (t)$

    图  3  BVI信号的阶跃分解图

    Figure  3.  Step decomposition diagram of BVI signals

    图  4  HSI信号的阶跃分解图

    Figure  4.  Step decomposition diagram of HSI signals

    图  5  小波基函数为一阶高斯小波时BVI和HSI信号的模极大值线及其衰减曲线

    Figure  5.  The modal extremum line and attenuation curve of BVI and HSI signal when the wavelet basis function is first order Gaussian wavelet

    图  6  BVI/HSI信号低信噪比下的时域信号及其对应的模极大值衰减曲线

    Figure  6.  Time domain signal diagram and attenuation curve of corresponding mode maximum line under low SNR of BVI and HSI signals

    图  7  二阶高斯小波基函数时域图

    Figure  7.  Time domain diagram of second order Gaussian wavelet basis function

    图  8  Gaus1和Gaus2小波基函数下BVI/HSI信号的模极值曲线衰减图

    Figure  8.  Attenuation diagram of maximum modulus curve of BVI/HSI signal under Gaus1 and Gaus2 wavelet basis functions

    图  9  不同参数下的实测BVI和HSI信号

    Figure  9.  Measured BVI and HSI signals with different parameters

    图  10  BVI和HSI信号在不同信噪比下的Lipschitz指数值

    Figure  10.  Lipschitz index values of BVI and HSI signals at different signal-to-noise ratios

    图  11  BVI和HSI信号的奇异性分布熵值

    Figure  11.  Singularity distribution entropy of BVI and HSI signal

    表  1  BVI/HSI信号在Gaus1和Gaus2小波基函数时奇异性分布熵大小关系

    Table  1.   Singularity distribution entropy of BVI/HSI signals in Gaus1 and Gaus2 wavelet base functions

    奇异性分布熵小波基函数 :Gaus1小波基函数 :Gaus2
    BVI信号
    HSI信号
    下载: 导出CSV
  • [1] ROMANI G, CASALINO D. Rotorcraft blade-vortex interaction noise prediction using the Lattice-Boltzmann method[J]. Aerospace Science and Technology, 2019, 88: 147–157. doi: 10.1016/j.ast.2019.03.029
    [2] TAYLOR R B. Helicopter rotor blade design for minimum vibration[R]. NASA-CR-3825, 1984.
    [3] PADFIELD G D. helicopter flight dynamics: the theory and application of flying qualities and simulation modeling[M]. 2nd ed. Oxford: Blackwell Pub, 2007.
    [4] KAPOOR R, RAMASAMY S, GARDI A, et al. Acoustic sensors for air and surface navigation applications[J]. Sensors, 2018, 18(2): 499. doi: 10.3390/s18020499
    [5] MUHR P, JOHNSON A C, SELANDER J, et al. Noise exposure and hearing impairment in air force pilots[J]. Aerospace Medicine and Human Performance, 2019, 90(9): 757–763. doi: 10.3357/AMHP.5353.2019
    [6] ZHAO Y Y, SHI Y J, XU G H. Helicopter blade-vortex interaction airload and noise prediction using coupling CFD/VWM method[J]. APPLIED SCIENCES, 2017, 7(4): 381. doi: 10.3390/APP7040381
    [7] STEPHENSON J H, TINNEY C E, GREENWOOD E, et al. Time frequency analysis of sound from a maneuvering rotorcraft[J]. Journal of Sound and Vibration, 2014, 333(21): 5324–5339. doi: 10.1016/j.jsv.2014.05.018
    [8] NARAYAN Y, KUMAR S. Pattern recognition of semg signals using dwt based feature and svm classifier[J]. International Journal of Advanced Science and Technology, 2020, 29(10S): 2257–2266.
    [9] SAHOO S, KANUNGO B, BEHERA S, et al. Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities[J]. Measurement, 2017, 108: 55–66. doi: 10.1016/j.measurement.2017.05.022
    [10] GOUGAM F, RAHMOUNE C, BENAZZOUZ D, et al. Bearing faults classification under various operation modes using time domain features, singular value decomposition, and fuzzy logic system[J]. Advances in Mechanical Engineering, 2020, 12(10). doi: 10.1177/1687814020967874
    [11] JIANG J J, MA J Y, CHEN C, et al. SuperPCA: a superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4581–4593. doi: 10.1109/tgrs.2018.2828029
    [12] POLACSEK C, ZIBI J, ROUZAUD O, et al. Helicopter rotor noise prediction using ONERA and DLR euler/kirchhoff methods[J]. Journal of the American Helicopter Society, 1999, 44(2): 121–131. doi: 10.4050/jahs.44.121
    [13] KENNETH, S, BRENTNER. Prediction of helicopter rotor discrete frequency noise for three scale models[J]. Journal of Aircraft, 1988. doi: 10.2514/3.45598
    [14] BRENTNER K S, BRES G A, PEREZ G, et al. Maneuvering rotorcraft noise prediction: a new code for a new problem[C]//Proc of AHS Aerodynamics, Acoustics and Test Evaluation Specialist Meeting. 2022.
    [15] MALLAT S, HWANG W L. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory, 1992, 38(2): 617–643. doi: 10.1109/18.119727
    [16] MALLAT S, ZHONG S. Characterization of signals from multiscale edges[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(7): 710–732. doi: 10.1109/34.142909
    [17] SADLER B M, SWAMI A. Analysis of wavelet transform multiscale products for step detection and estimation[J]. IEEE Transactions on Information Theory. 1999, 45(3): 1043-1051. doi: 10.1109/18.761341.
    [18] TU C L, HWANG W L, HO J. Analysis of singularities from modulus maxima of complex wavelets[J]. IEEE Transactions on Information Theory, 2005, 51(3): 1049–1062. doi: 10.1109/TIT.2004.842706
    [19] HSUNG T C, LUN D P K, SIU W C. Denoising by singularity detection[J]. IEEE Transactions on Signal Processing, 1999, 47(11): 3139–3144. doi: 10.1109/78.796450
    [20] MIAO Q, HUANG H Z, FAN X F. Singularity detection in machinery health monitoring using Lipschitz exponent function[J]. Journal of Mechanical Science and Technology, 2007, 21(5): 737–744. doi: 10.1007/BF02916351
    [21] FRIEDLANDER B, PORAT B. Detection of transient signals by the gabor representation[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(2): 169–180. doi: 10.1109/29.21680
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  342
  • HTML全文浏览量:  10
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-23
  • 修回日期:  2023-05-17
  • 录用日期:  2023-06-01
  • 网络出版日期:  2024-04-08
  • 刊出日期:  2024-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日