留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合成射流激励器能量转换效率的参数影响规律及优化研究

王雷 李哲 冯立好

王雷, 李哲, 冯立好. 合成射流激励器能量转换效率的参数影响规律及优化研究[J]. 实验流体力学, 2023, 37(4): 87-95 doi: 10.11729/syltlx20230039
引用本文: 王雷, 李哲, 冯立好. 合成射流激励器能量转换效率的参数影响规律及优化研究[J]. 实验流体力学, 2023, 37(4): 87-95 doi: 10.11729/syltlx20230039
WANG L, LI Z, FENG L H. Parameter influence and optimization of energy conversion efficiency of synthetic jet actuators[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 87-95 doi: 10.11729/syltlx20230039
Citation: WANG L, LI Z, FENG L H. Parameter influence and optimization of energy conversion efficiency of synthetic jet actuators[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 87-95 doi: 10.11729/syltlx20230039

合成射流激励器能量转换效率的参数影响规律及优化研究

doi: 10.11729/syltlx20230039
详细信息
    作者简介:

    王雷:(1991—),男,黑龙江大庆人,博士。研究方向:实验流体力学,流动控制。通信地址:北京市海淀区学院路37号北京航空航天大学航空科学与工程学院流体所(100191)。E-mail:lw0719@buaa.edu.cn

    通讯作者:

    E-mail:lhfeng@buaa. edu. cn

  • 中图分类号: O358

Parameter influence and optimization of energy conversion efficiency of synthetic jet actuators

  • 摘要: 压电式合成射流激励器具有无气源、射流速度高、响应快等特点,在流动控制领域应用广泛。射流出口速度峰值和能量转换效率是衡量压电式合成射流激励器性能的重要指标。在获得较高出口速度时,现有压电式合成射流激励器能量转换效率偏低。为提高压电式合成射流激励器性能,利用热线风速仪和功率计测量了其出口速度和功率,研究了出口长度、出口深度、腔体高度和陶瓷片厚度等参数对其性能的影响规律。研究发现:不同参数下,压电式合成射流激励器出口速度峰值随平均功率变化的趋势相似。通过对压电式合成射流激励器构型进行优化设计,提高了射流出口速度峰值,提升了能量转换效率(最大提升了233.3%),有效降低了能耗。
  • 图  1  压电式合成射流激励器组成部件及腔体截面示意图

    Figure  1.  Schematics of components and cavity section of piezoelectric-driven synthetic jet actuator

    图  2  实验测量系统

    Figure  2.  Experimental measurement system

    图  3  基准工况射流出口不同流向位置瞬时速度随时间的变化

    Figure  3.  Variation of instantaneous velocity at different streamwise locations from the exit of the baseline actuator

    图  4  基准工况的激励器特性

    Figure  4.  Characteristics of the baseline actuator

    图  5  不同出口长度的激励器特性

    Figure  5.  Characteristics of the actuators with different orifice lengths

    图  6  不同出口深度的激励器特性

    Figure  6.  Characteristics of the actuators with different orifice neck lengths

    图  7  不同腔体高度的激励器特性

    Figure  7.  Characteristics of the actuators with different cavity heights

    图  8  不同陶瓷片厚度的激励器特性

    Figure  8.  Characteristics of the actuators with different piezoceramics thicknesses

    图  9  不同参数的激励器出口速度峰值随平均功率变化

    Figure  9.  Exit peak velocity versus power for actuators with different configuration parameters

    图  10  优化工况的激励器特性

    Figure  10.  Characteristics of the optimized actuator

    图  11  本文优化的激励器性能与已有研究结果[14,20-22]对比

    Figure  11.  Comparison of performance between the present optimized actuator and previous ones[14,20-22]

    表  1  合成射流激励器参数

    Table  1.   Synthetic jet actuator configuration parameters

    激励器参数出口长度
    ${l_{\rm{o}}^*}$
    出口深度
    ${n_{\rm{o}}^*}$
    腔体高度
    ${h_{\rm{c}}^*}$
    陶瓷片厚度
    ${\delta _{\rm{p}}^*}$
    基准工况2015.02.00.15
    变化工况10, 15,
    20, 25
    10.0, 12.5, 15.0,
    17.5, 20.0
    1.5, 2.0,
    2.5
    0.15, 0.30,
    0.40
    下载: 导出CSV

    表  2  合成射流激励器优化后的参数

    Table  2.   Optimized synthetic jet actuator configuration parameters

    激励器参数出口长度${l_{\rm{o}}^*}$出口深度${n_{\rm{o}}^*}$腔体高度${h_{\rm{c}}^*}$陶瓷片厚度${\delta _{\rm{p}}^*}$
    优化工况2512.52.50.15
    下载: 导出CSV
  • [1] CARTER D L. Legacy aircraft drag reduction[C]//Proc of the 54th AIAA Aerospace Sciences Meeting. 2016. doi: 10.2514/6.2016-0535
    [2] WANG J J, FENG L H. Flow control techniques and applications[M]. Cambridge: Cambridge University Press, 2018.
    [3] 罗振兵, 夏智勋, 邓雄, 等. 合成双射流及其流动控制技术研究进展[J]. 空气动力学学报, 2017, 35(2): 252–264. doi: 10.7638/kqdlxxb-2017.0053

    LUO Z B, XIA Z X, DENG X, et al. Research progress of dual synthetic jets and its flow control technology[J]. Acta Aerodynamica Sinica, 2017, 35(2): 252–264. doi: 10.7638/kqdlxxb-2017.0053
    [4] GLEZER A, AMITAY M. Synthetic jets[J]. Annual Review of Fluid Mechanics, 2002, 34: 503–529. doi: 10.1146/annurev.fluid.34.090501.094913
    [5] 罗振兵, 夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展, 2005, 35(2): 221–234. doi: 10.6052/1000-0992-2005-2-J2004-044

    LUO Z B, XIA Z X. Advances in synthetic jet technology and applications in flow control[J]. Advances in Mechanics, 2005, 35(2): 221–234. doi: 10.6052/1000-0992-2005-2-J2004-044
    [6] 张攀峰, 王晋军, 冯立好. 零质量射流技术及其应用研究进展[J]. 中国科学(E辑), 2008, 38(3): 321–349. doi: 10.3321/j.issn:1006-9275.2008.03.001

    ZHANG P F, WANG J J, FENG L H. Research progress of zero-mass jet technology and its application[J]. Science in China Series E:Technological Sciences, 2008, 38(3): 321–349. doi: 10.3321/j.issn:1006-9275.2008.03.001
    [7] 吴继飞, 罗新福, 徐来武, 等. 活塞式合成射流技术及其应用研究[J]. 实验流体力学, 2014, 28(6): 61–65. doi: 10.11729/syltlx20130076

    WU J F, LUO X F, XU L W, et al. Investigation on piston-typed synthetic j et technology and its application[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(6): 61–65. doi: 10.11729/syltlx20130076
    [8] TANG H, ZHONG S, JABBAL M, et al. Towards the design of synthetic-jet actuators for full-scale flight conditions: Part 2: Low-dimensional performance prediction models and actuator design method[J]. Flow, Turbulence and Combustion, 2007, 78(3): 309–329. doi: 10.1007/s10494-006-9061-3
    [9] 李斌斌, 姚勇, 顾蕴松, 等. 基于合成射流的二维后台阶分离流主动控制[J]. 航空学报, 2016, 37(6): 1753–1762. doi: 10.7527/S1000-6893.2016.0014

    LI B B, YAO Y, GU Y S, et al. Active control of 2D backward facing step separated flow based on synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6): 1753–1762. doi: 10.7527/S1000-6893.2016.0014
    [10] 张振辉, 李栋. 合成射流激励器的特性及其后台阶流动控制应用[J]. 机械工程学报, 2018, 54(6): 224–232. doi: 10.3901/JME.2018.06.224

    ZHANG Z H, LI D. Characteristics of a synthetic jet actuator and its application on control of flow over a backward facing step[J]. Journal of Mechanical Engineering, 2018, 54(6): 224–232. doi: 10.3901/JME.2018.06.224
    [11] 赵国庆, 招启军, 顾蕴松, 等. 合成射流对失速状态下翼型大分离流动控制的试验研究[J]. 力学学报, 2015, 47(2): 351–355. doi: 10.6052/0459-1879-14-134

    ZHAO G Q, ZHAO Q J, GU Y S, et al. Experimental investigation of synthetic jet control on large flow separation of airfoil during stall[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 351–355. doi: 10.6052/0459-1879-14-134
    [12] 杨升科, 郭奇灵, 罗振兵, 等. 基于合成射流的机翼溢流冰防护实验[J]. 航空动力学报, 2020, 35(11): 2364–2370. doi: 10.13224/j.cnki.jasp.2020.11.013

    YANG S K, GUO Q L, LUO Z B, et al. Experiment on airfoil runback ice protection based on synthetic jet[J]. Journal of Aerospace Power, 2020, 35(11): 2364–2370. doi: 10.13224/j.cnki.jasp.2020.11.013
    [13] ZHANG B L, LIU H, LI Y Y, et al. Experimental study of coaxial jets mixing enhancement using synthetic jets[J]. Applied Sciences, 2021, 11(2): 803. doi: 10.3390/app11020803
    [14] JABBAL M, JEYALINGAM J. Towards the noise reduction of piezoelectrical-driven synthetic jet actuators[J]. Sensors and Actuators A: Physical, 2017, 266: 273–284. doi: 10.1016/j.sna.2017.09.036
    [15] 曹永飞, 顾蕴松, 韩杰星. 流体推力矢量技术验证机研制及飞行试验研究[J]. 空气动力学学报, 2019, 37(4): 593–599. doi: 10.7638/kqdlxxb-2017.0202

    CAO Y F, GU Y S, HAN J X. Development and flight testing of a fluidic thrust vectoring demonstrator[J]. Acta Aerodynamica Sinica, 2019, 37(4): 593–599. doi: 10.7638/kqdlxxb-2017.0202
    [16] WANG L, FENG L H, WANG J J, et al. Evolution of low-aspect-ratio rectangular synthetic jets in a quiescent environment[J]. Experiments in Fluids, 2018, 59(6): 1–16. doi: 10.1007/s00348-018-2544-x
    [17] WANG L, FENG L H, WANG J J, et al. Characteristics and mechanism of mixing enhancement for noncircular synthetic jets at low Reynolds number[J]. Experimental Thermal and Fluid Science, 2018, 98: 731–743. doi: 10.1016/j.expthermflusci.2018.06.021
    [18] WANG L, FENG L H, XU Y. Laminar-to-transitional evolution of three-dimensional vortical structures in a low-aspect-ratio rectangular synthetic jet[J]. Experimental Thermal and Fluid Science, 2019, 104: 129–140. doi: 10.1016/j.expthermflusci.2019.02.004
    [19] GOMES L, CROWTHER W. Towards a practical piezoceramic diaphragm based synthetic jet actuator for high subsonic applications - effect of chamber and orifice depth on actuator peak velocity[C]//Proc of the 3rd AIAA Flow Control Conference. 2006. doi: 10.2514/6.2006-2859
    [20] VAN BUREN T, WHALEN E, AMITAY M. Achieving a high-speed and momentum synthetic jet actuator[J]. Journal of Aerospace Engineering, 2016, 29(2): 04015040. doi: 10.1061/(asce)as.1943-5525.0000530
    [21] GUNGORDU B. Jet velocity enhancement of synthetic jets: unimorph vs. bimorph piezoelectric actuator[C]//Proc of the AIAA SCITECH 2022 Forum. 2022. doi: 10.2514/6.2022-0710
    [22] CROWTHER W J, GOMES L T. An evaluation of the mass and power scaling of synthetic jet actuator flow control technology for civil transport aircraft applications[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2008, 222(5): 357–372. doi: 10.1243/09596518jsce519
    [23] VAN BUREN T, WHALEN E, AMITAY M. Vortex formation of a finite-span synthetic jet: effect of rectangular orifice geometry[J]. Journal of Fluid Mechanics, 2014, 745: 180–207. doi: 10.1017/jfm.2014.77
    [24] JEYALINGAM J, JABBAL M. Optimization of Synthetic Jet Actuator design for noise reduction and velocity enhancement[C]//Proc of the 8th AIAA Flow Control Conference. 2016. doi: 10.2514/6.2016-4236
    [25] LOCKERBY D A, CARPENTER P W. Modeling and design of microjet actuators[J]. AIAA Journal, 2004, 42(2): 220–227. doi: 10.2514/1.9091
    [26] RIZZETTA D P, VISBAL M R, STANEK M J. Numerical investigation of synthetic-jet flowfields[J]. AIAA Journal, 1999, 37(8): 919–927. doi: 10.2514/2.811
    [27] MANE P, MOSSI K, ROSTAMI A, et al. Piezoelectric actuators as synthetic jets: Cavity dimension effects[J]. Journal of Intelligent Material Systems and Structures, 2007, 18(11): 1175–1190. doi: 10.1177/1045389x06075658
    [28] CHEN F J, YAO C, BEELER G, et al. Development of synthetic jet actuators for active flow control at NASA Langley[C]//Proc of the Fluids 2000 Conference and Exhibit. 2000. doi: 10.2514/6.2000-2405
    [29] 邓雄. 合成双射流矢量控制特性及其强化换热应用研究[D]. 长沙: 国防科学技术大学, 2015.

    DENG X. Research on vector-controlling characteristic of dual synthetic jets and its applications in heat transfer enhancement[D]. Changsha: National University of Defense Technology, 2015.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  31
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-20
  • 修回日期:  2023-05-04
  • 录用日期:  2023-05-08
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日