留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

振荡射流控制方法在无舵面飞行控制中的应用

仇梓豪 李子焱 周楷文 王士奇 刘应征 温新

仇梓豪, 李子焱, 周楷文, 等. 振荡射流控制方法在无舵面飞行控制中的应用[J]. 实验流体力学, 2023, 37(4): 116-125 doi: 10.11729/syltlx20230045
引用本文: 仇梓豪, 李子焱, 周楷文, 等. 振荡射流控制方法在无舵面飞行控制中的应用[J]. 实验流体力学, 2023, 37(4): 116-125 doi: 10.11729/syltlx20230045
QIU Z H, LI Z Y, ZHOU K W, et al. Sweeping jet control mechanism and its application in flapless flight control[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 116-125 doi: 10.11729/syltlx20230045
Citation: QIU Z H, LI Z Y, ZHOU K W, et al. Sweeping jet control mechanism and its application in flapless flight control[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 116-125 doi: 10.11729/syltlx20230045

振荡射流控制方法在无舵面飞行控制中的应用

doi: 10.11729/syltlx20230045
基金项目: 国家自然科学基金项目(12072196)
详细信息
    作者简介:

    仇梓豪:(1998—),男,江苏徐州人,硕士研究生。研究方向:实验流体力学,流动控制。通信地址:上海市闵行区东川路800号上海交通大学闵行校区机械与动力工程学院叶轮机械研究所(200240)。E-mail:qiuzihao1117@sjtu.edu.cn

    通讯作者:

    E-mail:wenxin84@sjtu.edu.cn

  • 中图分类号: V211.7

Sweeping jet control mechanism and its application in flapless flight control

  • 摘要: 利用射流主动流动控制方法,飞行器无舵面飞行控制技术取消了传统的机械舵面,具有附加重量小、控制性能优异等优点,适合隐形设计。本文针对现有定常射流控制方法控制效率较低、耗气量大等问题,介绍了振荡射流在无舵面飞行控制中的应用,概述了2项无舵面飞行控制技术——环量控制技术和流体推力矢量技术——的研究现状,讨论了振荡射流在扩大控制区域、增强掺混和频率调节方面的机理和优势。从环量控制和流体推力矢量2个角度出发,详细介绍了振荡射流在无舵面飞行控制中的应用机理和优异表现。
  • 图  1  环量控制翼型示意图

    Figure  1.  Schematic of a wing using circulation control

    图  2  同向二次流控制方法原理示意图

    Figure  2.  The schematic diagram of the principle of the co-directional secondary flow control method

    图  3  双反馈通道流体振荡器原理示意图

    Figure  3.  Schematic of a fluidic oscillator with two feedback channels

    图  4  毫米级流体振荡器

    Figure  4.  Millimeter-scale fluid oscillator

    图  5  Jones等的环量控制翼型几何设计[54]

    Figure  5.  Geometric details of the circulation control wings from Jones[54]

    图  6  SACCON模型配置示意图[55]

    Figure  6.  Schematic of the configuration in SACCON[55]

    图  7  Li等的环量控制翼型几何设计[56]

    Figure  7.  Geometric details of the circulation control wings from Li[56]

    图  8  不同射流驱动下环量控制翼型的气动特性

    Figure  8.  Aerodynamic characteristics of different jet driven circulation control wings

    图  9  Wen等的实验装置设计[52]

    Figure  9.  Schematic of the experimental device design from Wen[52]

    图  10  二次流控制下的主射流偏转情况

    Figure  10.  The main jet deflection under secondary flow control

  • [1] WARSOP C, CROWTHER W J. Fluidic flow control effectors for flight control[J]. AIAA Journal, 2018, 56(10): 3808–3824. doi: 10.2514/1.J056787
    [2] FIELDING J, LAWSON C, MARTINS-PIRES R, et al. Design, build and flight of the DEMON demonstrator UAV[C]//Proc of the 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. 2011: 6963. doi: 10.2514/6.2011-6963.
    [3] WARSOP C, CROWTHER W. NATO AVT-239 Task Group: Flight demonstration of fluidic flight controls on the MAGMA subscale demonstrator Aircraft[C]//Proc of the AIAA Scitech 2019 Forum. 2019: 0282. doi: 10.2514/6.2019-0282.
    [4] HENRI C. Device for deflecting a stream of elastic fluid projected into an elastic fluid: US2052869[P]. 1936-09-01.
    [5] REBA I. Applications of the coanda effect[J]. Scientific American, 1966, 214(6): 84–92. doi: 10.1038/scientificamerican0666-84
    [6] ENGLAR R J. Experimental investigation of the high velocity Coanda wall jet applied to bluff trailing edge circulation control airfoils[R]. NASA STI/Recon Technical Report N, 1975, 76: 26438.
    [7] ABRAMSON J, ROGERS E. High-speed characteristics of circulation control airfoils[C]//Proc of the 21st Aerospace Sciences Meeting. 1983: 265. doi: 10.2514/6.1983-265
    [8] WOOD N, NIELSEN J. Circulation control airfoils - Past, present, future[C]//Proc of the 23rd Aerospace Sciences Meeting. 1985: 204. doi: 10.2514/6.1985-204.
    [9] ENGLAR R. Circulation control pneumatic aerodynamics: blown force and moment augmentation and modification - Past, present and future[C]//Proc of the Fluids 2000 Conference and Exhibit. 2000: 2541. doi: 10.2514/6.2000-2541.
    [10] JONES G, VIKEN S, WASHBURN A, et al. An active flow circulation controlled flap concept for general aviation aircraft applications[C]//Proc of the 1st Flow Control Conference. 2002: 3157. doi: 10.2514/6.2002-3157.
    [11] SHI Z W, ZHU J C, DAI X X, et al. Aerodynamic characteristics and flight testing of a UAV without control surfaces based on circulation control[J]. Journal of Aerospace Engineering, 2019, 32(1): 4018134.1–4018134.23. doi: 10.1061/(asce)as.1943-5525.0000947
    [12] LUO Z B, ZHAO Z J, LIU J F, et al. Novel roll effector based on zero-mass-flux dual synthetic jets and its flight test[J]. Chinese Journal of Aeronautics, 2022, 35(8): 1–6. doi: 10.1016/j.cja.2021.08.015
    [13] 雷玉昌, 张登成, 张艳华, 等. 超临界翼型的双射流环量控制研究[J]. 飞行力学, 2020, 38(4): 16–21. doi: 10.13645/j.cnki.f.d.20200602.010

    LEI Y C, ZHANG D C, ZHANG Y H, et al. Circulation control of double jet flow on supercritical airfoil[J]. Flight Dynamics, 2020, 38(4): 16–21. doi: 10.13645/j.cnki.f.d.20200602.010
    [14] 王磊, 杜海, 李秋实, 等. 环量控制机翼增升及滚转控制特性研究[J]. 空气动力学学报, 2021, 39(1): 43–51. doi: 10.7638/kqdlxxb-2019.0069

    WANG L, DU H, LI Q S, et al. Research on the lift-enhancement and roll control characteristics of a circulation control wing[J]. Acta Aerodynamica Sinica, 2021, 39(1): 43–51. doi: 10.7638/kqdlxxb-2019.0069
    [15] 雷玉昌, 张登成, 张艳华. 环量控制翼型非定常气动力建模[J]. 北京航空航天大学学报, 2021, 47(10): 2138–2148. doi: 10.13700/j.bh.1001-5965.2020.0360

    LEI Y C, ZHANG D C, ZHANG Y H. Unsteady aerodynamic modeling of circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2138–2148. doi: 10.13700/j.bh.1001-5965.2020.0360
    [16] 雷玉昌, 张登成, 张艳华, 等. 脉冲射流对环量控制翼型气动性能的影响[J]. 北京航空航天大学学报, 2022, 48(3): 485–494. doi: 10.13700/j.bh.1001-5965.2020.0560

    LEI Y C, ZHANG D C, ZHANG Y H, et al. Effect of pulsed jet on aerodynamic performance of circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 485–494. doi: 10.13700/j.bh.1001-5965.2020.0560
    [17] BARHAM R. Thrust vector aided maneuvering of the YF-22 Advanced Tactical Fighter prototype[C]//Proc of the Biennial Flight Test Conference. 1994: 2105. doi: 10.2514/6.1994-2105.
    [18] 肖中云, 江雄, 牟斌, 等. 流体推力矢量技术研究综述[J]. 实验流体力学, 2017, 31(4): 8–15. doi: 10.11729/syltlx20160207

    XIAO Z Y, JIANG X, MOU B, et al. Advances influidic thrust vectoring technique research[J]. Journal of Experi-ments in Fluid Mechanics, 2017, 31(4): 8–15. doi: 10.11729/syltlx20160207
    [19] DEERE K. Summary of fluidic thrust vectoring research at NASA langley research center[C]//Proc of the 21st AIAA Applied Aerodynamics Conference. 2003: 3800. doi: 10.2514/6.2003-3800.
    [20] FLAMM J D, DEERE K A, BERRIER B L, et al. Experimental study of a dual-throat fluidic thrust-vectoring nozzle concept[C]//Proc of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2005: 3503. doi: 10.2514/6.2005-3503.
    [21] DENG R Y, SETOGUCHI T, DONG KIM H. Large eddy simulation of shock vector control using bypass flow passage[J]. International Journal of Heat and Fluid Flow, 2016, 62: 474–481. doi: 10.1016/j.ijheatfluidflow.2016.08.011
    [22] MILLER D, YAGLE P, HAMSTRA J. Fluidic throat skewing for thrust vectoring in fixed-geometry nozzles[C]// Proc of the 37th Aerospace Sciences Meeting and Exhibit. 1999: 365. doi: 10.2514/6.1999-365.
    [23] WASHINGTON D M, ALVI F S, STRYKOWSKI P J, et al. Multiaxis fluidic thrust vector control of a supersonic jet using counterflow[J]. AIAA Journal, 1996, 34(8): 1734–1736. doi: 10.2514/3.13296
    [24] DEERE K A, BERRIER B L, FLAMM J D, et al. A computational study of a dual throat fluidic thrust vectoring nozzle concept[C]//Proc of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2005: 3502. doi: 10.2514/6.2005-3502.
    [25] SUNG H G, HEO J Y. Fluidic thrust vector control of supersonic jet using coflow injection[J]. Journal of Propul-sion and Power, 2012, 28(4): 858–861. doi: 10.2514/1.B34266
    [26] MASON M, CROWTHER W. Fluidic thrust vectoring for low observable air vehicles[C]//Proc of the 2nd AIAA Flow Control Conference. 2004: 2210. doi: 10.2514/6.2004-2210
    [27] SONG M, PARK S, LEE Y. Application of backstep coanda flap for supersonic coflowing fluidic thrust-vector control[J]. AIAA Journal, 2014, 52(10): 2355–2359. doi: 10.2514/1.J052971
    [28] 龚东升. 基于微型涡喷发动机的无源流体推力矢量喷管的研究[D]. 南京: 南京航空航天大学硕士学位论文, 2020.

    GONG D S. Research on passive fluid thrust vector nozzle based on micro turbojet engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.
    [29] 龚东升, 顾蕴松, 周宇航, 等. 基于微型涡喷发动机热喷流的无源流体推力矢量喷管的控制规律[J]. 航空学报, 2020, 41(10): 101–112. doi: 10.7527/S1000-6893.2019.23609

    GONG D S, GU Y S, ZHOU Y H, et al. Control law of passive fluid thrust vector nozzle based on thermal jet of micro turbojet engine[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 101–112. doi: 10.7527/S1000-6893.2019.23609
    [30] 冯潮, 顾蕴松, 方瑞山, 等. 水下无源流体推力矢量喷管流动特性研究[J]. 实验流体力学.

    FENG C, GU Y S, FANG R S, et al. Research on flow characteristics of underwater passive fluidic thrust vectoring nozzle[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220071
    [31] 肖中云, 顾蕴松, 江雄, 等. 一种基于引射效应的流体推力矢量新技术[J]. 航空学报, 2012, 33(11): 1967–1974. doi: 10.3321/j.issn:1000-6893.2008.04.001

    XIAO Z Y, GU Y S, JIANG X, et al. A new fluidic thrust vectoring technique based on ejecting mixing effects[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 1967–1974. doi: 10.3321/j.issn:1000-6893.2008.04.001
    [32] 耿令波, 胡志强, 林扬, 等. 基于横向二次射流的水下推力矢量方法[J]. 航空动力学报, 2017, 32(8): 1922–1932. doi: 10.13224/j.cnki.jasp.2017.08.016

    GENG L B, HU Z Q, LIN Y, et al. Underwater thrust vectoring method based on cross second flow[J]. Journal of Aerospace Power, 2017, 32(8): 1922–1932. doi: 10.13224/j.cnki.jasp.2017.08.016
    [33] YAROS S F, SEXSTONE M G, HUEBNER L D, et al. Synergistic Airframe-Propulsion Interactions and Integra-tions: A White Paper Prepared by the 1996-1997 Langley Aeronautics Technical Committee[R]. NASA/TM-1998-207644, 1998.
    [34] JONES G S, ENGLAR R J. Advances in pneumatic controlled high lift systems through pulsed blowing[C]//Proc of the 21st AIAA Applied Aerodynamics Conference. 2003: 3411. doi: 10.2514/6.2003-3411.
    [35] JONES A, EDSTRAND A, CHANDRAN M, et al. An experimental investigation of unsteady and steady circulation control for an elliptical airfoil[C]//Proc of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010. doi: 10.2514/6.2010-346.
    [36] PACK L G, SEIFERT A. Periodic excitation for jet vectoring and enhanced spreading[J]. Journal of Aircraft, 2001, 38(3): 486–495. doi: 10.2514/2.2788
    [37] WOSZIDLO R, OSTERMANN F, SCHMIDT H J. Fundamental properties of fluidic oscillators for flow control applications[J]. AIAA Journal, 2019, 57(3): 978–992. doi: 10.2514/1.J056775
    [38] BOBUSCH B C, WOSZIDLO R, BERGADA J M, et al. Experimental study of the internal flow structures inside a fluidic oscillator[J]. Experiments in Fluids, 2013, 54(6): 1559. doi: 10.1007/s00348-013-1559-6
    [39] GAERTLEIN S, WOSZIDLO R, OSTERMANN F, et al. The time-resolved internal and external flow field properties of a fluidic oscillator[C]//Proc of the 52nd Aerospace Sciences Meeting. 2014: 1143. doi: 10.2514/6.2014-1143.
    [40] OSTERMANN F, WOSZIDLO R, NAYERI C, et al. Experimental comparison between the flow Field of two common fluidic oscillator designs[C]//Proc of the 53rd AIAA Aerospace Sciences Meeting. 2015: 0781. doi: 10.2514/6.2015-0781.
    [41] LI Z Y, LIU J J, ZHOU W W, et al. Experimental investigation of flow dynamics of sweeping jets impinging upon confined concave surfaces[J]. International Journal of Heat and Mass Transfer, 2019, 142: 118457. doi: 10.1016/j.ijheatmasstransfer.2019.118457
    [42] GREGORY J W, SULLIVAN J P, RAMAN G, et al. Characterization of the microfluidic oscillator[J]. AIAA Journal, 2007, 45(3): 568–576. doi: 10.2514/1.26127
    [43] MELTON L P, KOKLU M, ANDINO M, et al. Active flow control via discrete sweeping and steady jets on a simple-hinged flap[J]. AIAA Journal, 2018, 56(8): 2961–2973. doi: 10.2514/1.j056841
    [44] RAMAN G, RAGHU S. Miniature fluidic oscillators for flow and noise control - Transitioning from macro to micro fluidics[C]//Proc of the Fluids 2000 Conference and Exhibit. 2000: 2554. doi: 10.2514/6.2000-2554.
    [45] SCHMIDT H -J, WOSZIDLO R, NAYERI C N, et al. Drag reduction on a rectangular bluff body with base flaps and fluidic oscillators[J]. Experiments in Fluids, 2015, 56(7): 151. doi: 10.1007/s00348-015-2018-3
    [46] GUYOT D, BOBUSCH B, PASCHEREIT C O, et al. Active combustion control using a fluidic oscillator for asymmetric fuel flow modulation[C]//Proc of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2008: 4956. doi: 10.2514/6.2008-4956.
    [47] ZHOU W, YUAN L, LIU Y, et al. Heat transfer of a sweeping jet impinging at narrow spacings[J]. Experimental Thermal and Fluid Science, 2019, 103: 89–98. doi: 10.1016/j.expthermflusci.2019.01.007
    [48] DENNAI B, BENTALEB A, CHEKIFI T, et al. Micro fluidic oscillator: a technical solution for micro mixture[J]. Advanced Materials Research, 2014, 1064: 213–218. doi: 10.4028/www.scientific.net/amr.1064.213
    [49] 周銮良, 王士奇, 温新. 高频高速流体振荡器工作特性[J]. 航空动力学报, 2022, 37(4): 877–885. doi: 10.13224/j.cnki.jasp.20210099

    ZHOU L L, WANG S Q, WEN X. Working characteristics of a fluidic oscillator with high frequency and high speed[J]. Journal of Aerospace Power, 2022, 37(4): 877–885. doi: 10.13224/j.cnki.jasp.20210099
    [50] ZHOU L L, WANG S Q, SONG J S, et al. Study of internal time-resolved flow dynamics of a subsonic fluidic oscillator using fast pressure sensitive paint[J]. Experiments in Fluids, 2022, 63(1): 17. doi: 10.1007/s00348-021-03370-w
    [51] OSTERMANN F, WOSZIDLO R, NAYERI C N, et al. Properties of a sweeping jet emitted from a fluidic oscillator[J]. Journal of Fluid Mechanics, 2018, 857: 216–238. doi: 10.1017/jfm.2018.739
    [52] ADHIKARI A, SCHWEITZER T, LÜCKOFF F, et al. Design of a fluidic actuator with independent frequency and amplitude modulation for control of swirl flame dynamics[J]. Fluids, 2021, 6(3): 128. doi: 10.3390/fluids6030128
    [53] CAPOBIANCO V, SHANKAR P, JIANG M. Effect of slot height variation on the aerodynamic performance of a circulation control airfoil: a CFD analysis[C]//Proc of the AIAA Scitech 2019 Forum. 2019: 0579. doi: 10.2514/6.2019-0579.
    [54] JONES G S, MILHOLEN W E, CHAN D T, et al. A sweeping jet application on a high Reynolds number semi-span supercritical wing configuration[C]//Proc of the 35th AIAA Applied Aerodynamics Conference. 2017: 3044. doi: 10.2514/6.2017-3044.
    [55] JENTZSCH M, TAUBERT L, WYGNANSKI I. Using sweeping jets to trim and control a tailless aircraft model[J]. AIAA Journal, 2019, 57(6): 2322–2334. doi: 10.2514/1.j056962
    [56] LI Z Y, LIU Y D, ZHOU W W, et al. Lift augmentation potential of the circulation control wing driven by sweeping jets[J]. AIAA Journal, 2022, 60(8): 4677–4698. doi: 10.2514/1.J061456
    [57] TEN J S, POVEY T. Self-Excited Fluidic Oscillators for gas turbines cooling enhancement: experimental and computa-tional study[J]. Journal of Thermophysics and Heat Transfer, 2018, 33(2): 536–547. doi: 10.2514/1.T5261
    [58] BORGMANN D, PANDE A, LITTLE J C, et al. Experimental study of discrete jet forcing for flow separation control on a wall mounted hump[C]//Proc of the 55th AIAA Aerospace Sciences Meeting. 2017: 1450. doi: 10.2514/6.2017-1450.
    [59] WEN X, ZHOU K W, LIU P C, et al. Schlieren visualization of coflow fluidic thrust vectoring using sweeping jets[J]. AIAA Journal, 2021: 1-10. doi: 10.2514/1.J060805.
    [60] DORES D, MADRUGA SANTOS M M, KROTHAPALLI A, et al. Characterization of a counterflow thrust vectoring scheme on a gas turbine engine exhaust jet[C]//Proc of the 3rd AIAA Flow Control Conference. 2006: 3516. doi: 10.2514/6.2006-3516.
  • 加载中
图(10)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  38
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-28
  • 修回日期:  2023-06-08
  • 录用日期:  2023-07-03
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日