留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆形流管内高阶混合模态激发的全局标定方法

高康 郐浩瑜 黄时春 余亮 蒋伟康

高康, 郐浩瑜, 黄时春, 等. 圆形流管内高阶混合模态激发的全局标定方法[J]. 实验流体力学, 2024, 38(1): 37-45 doi: 10.11729/syltlx20230057
引用本文: 高康, 郐浩瑜, 黄时春, 等. 圆形流管内高阶混合模态激发的全局标定方法[J]. 实验流体力学, 2024, 38(1): 37-45 doi: 10.11729/syltlx20230057
GAO K, KUAI H Y, HAUNG S, et al. Excitation and global calibration of duct modes with high orders and complex mixtures inside a cylindrical duct with flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 37-45 doi: 10.11729/syltlx20230057
Citation: GAO K, KUAI H Y, HAUNG S, et al. Excitation and global calibration of duct modes with high orders and complex mixtures inside a cylindrical duct with flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 37-45 doi: 10.11729/syltlx20230057

圆形流管内高阶混合模态激发的全局标定方法

doi: 10.11729/syltlx20230057
基金项目: 国家自然科学基金重点项目(51835008)
详细信息
    作者简介:

    高康:(1999—),男,江西吉安人,博士研究生。研究方向:管道声源及其声模态的测量与辨识,旋转噪声源的测量与辨识,气动噪声源反演理论与辐射声场重建。E-mail:gk_sjtu@sjtu.edu.cn

    通讯作者:

    E-mail:liang.yu@sjtu.edu.cn

  • 中图分类号: TBS3

Excitation and global calibration of duct modes with high orders and complex mixtures inside a cylindrical duct with flow

  • 摘要: 声模态发生器是通过调控扬声器阵列,进而在管道内激发特定阶次声模态的一种装置,可用于流管内气动噪声传播和环形声衬的降噪研究。使用多圈布置的扬声器阵列模态发生器,通过调节各个声源的幅值和相位,可实现高阶周向、径向和混合模态的激发。然而,扬声器阵列系统的通道输出偏差会在目标模态激发时产生显著的干扰模态。为消除扬声器系统通道输出差异对模态激发的影响,提出了基于最小二乘全局标定的流管内高阶混合模态激发方法。通过对扬声器声源的通道输出偏差进行全局建模,引入激励补偿因子和流场校正因子,将有流情况下各扬声器的系统输出偏差求解问题转换为无流情况下单个扬声器工作时的模态识别问题,通过矩阵变换和最小二乘法求解各扬声器的激励补偿因子,最终实现扬声器的幅值和相位激励修正。将所发展的模态激发与全局标定方法应用于所研制的圆形流管模态激发装置,结果表明:干扰模态的强度被显著抑制,且在工作频率范围内,目标激发模态的相对目标模态系数不低于10 dB。
  • 图  1  轴向多圈布置的管壁声源阵列

    Figure  1.  An axial multi-rings source array arranged on the duct wall

    图  2  激励补偿因子的测量与模态激发过程

    Figure  2.  The process of calibration and duct mode excitation in the flow environment

    图  3  圆形流管模态发生器

    Figure  3.  Spinning mode synthesizer in the cylindrical duct with flow

    图  4  管壁传声器阵列空间位置

    Figure  4.  The position of the wall-mounted microphone array

    图  5  热线风速仪

    Figure  5.  The hot wire anemometer

    图  6  管内一维热线探头

    Figure  6.  The 1D hot wire probe in the duct

    图  7  模态发生器管道内流速

    Figure  7.  Flow velocity inside the spinning mode synthesizer

    图  8  流速19.85 m/s下 3300 Hz激发的(7, 0)阶模态声源复强度

    Figure  8.  The complex source strength for mode (7, 0) in 3300 Hz at a flow velocity of 19.85 m/s

    图  9  流速19.85 m/s下 3700 Hz 激发的(0, 2)和(5, 0)阶模态的声源复强度

    Figure  9.  The complex source strength for modes (0, 2) and (5, 0) in 3700 Hz at a flow velocity of 19.85 m/s

    图  10  流速19.85 m/s下 3300 Hz 激发的(7, 0)阶模态的识别结果

    Figure  10.  Mode calculation results for mode (7, 0) in 3300 Hz at a flow velocity of 19.85 m/s

    图  11  流速19.85 m/s下 3700 Hz 激发的(0, 2)和(5, 0)阶模态的识别结果

    Figure  11.  Mode calculation results for modes (0, 2) and (5, 0) in 3700 Hz at a flow velocity of 19.85 m/s

  • [1] 乔渭阳, 王良锋. 航空发动机气动声学[M]. 2版. 西安: 西北工业大学出版社, 2016.
    [2] BU H X, HUANG X, ZHANG X. An overview of testing methods for aeroengine fan noise[J]. Progress in Aerospace Sciences, 2021, 124: 100722. doi: 10.1016/j.paerosci.2021.100722
    [3] SEINER J M, REETHOF G. Design and development of the spinning mode synthesizer[M]. Washington: National Aeronautics and Space Administration, 1973.
    [4] BERTSCH L, SNELLEN M, ENGHARDT L, et al. Aircraft noise generation and assessment: executive summary[J]. CEAS Aeronautical Journal, 2019, 10(1): 3–9. doi: 10.1007/s13272-019-00384-3
    [5] BACCOUCHE R, MOREAU S, BEN M. Test of single degree of freedom acoustic treatment impedance models for multimodal acoustic propagation in duct with flow[J]. The Journal of the Acoustical Society of America, 2017, 141(6): 4168–4178. doi: 10.1121/1.4983653
    [6] 张涛, 林大楷, 张颖哲, 等. 基于模态发生器的进气道风扇噪声及声衬降噪实验[J]. 航空动力学报, 2021, 36(2): 240–248. doi: 10.13224/j.cnki.jasp.2021.02.003

    ZHANG T, LIN D K, ZHANG Y Z, et al. Experiment of intake fan noise and noise reduction of acoustic liner based on mode generator[J]. Journal of Aerospace Power, 2021, 36(2): 240–248. doi: 10.13224/j.cnki.jasp.2021.02.003
    [7] PALUMBO D L. An operations manual for the Spinning Mode Synthesizer in the Langley Aircraft Noise Reduction Laboratory[R]. NASA-CR-165698, 1981.
    [8] BÖHNING P, ARNOLD F, HOLSTE F, et al. Aerodynamic duct mode generator[C]//Proc of the 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference). 2007. doi: 10.2514/6.2007-3433
    [9] 高翔, 薛东文, 燕群, 等. 涡扇发动机旋转声模态发生与测试试验研究[J]. 科学技术与工程, 2018, 18(23): 128–133. doi: 10.3969/j.issn.1671-1815.2018.23.018

    GAO X, XUE D W, YAN Q, et al. Research on acoustic spinning mode synthesizer and measurement of turbofan engine method validating experiment[J]. Science Technology and Engineering, 2018, 18(23): 128–133. doi: 10.3969/j.issn.1671-1815.2018.23.018
    [10] SUTLIFF D L, JONES M G, NARK D M. In-duct and farfield experimental measurements from the ancf for the purpose of improved broadband liner optimization[C]// Proc of the 20th AIAA/CEAS Aeroacoustics Conference. 2014. doi: 10.2514/6.2014-3231
    [11] MUMCU A, KELLER C, HURFAR C M, et al. An acoustic excitation system for the generation of turbomachinery specific sound fields: part I—design and methodology[C]//Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. 2016. doi: 10.1115/GT2016-56020
    [12] HURFAR C M, KELLER C, MUMCU A, et al. An acoustic excitation system for the generation of turbomachinery specific sound fields: part II—experimental verification[C]//Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. 2016 doi: 10.1115/GT2016-56969
    [13] 薛东文, 燕群, 高翔, 等. 发动机涵道高阶声模态控制技术研究[J]. 计算机仿真, 2019, 36(6): 125–130, 185. doi: 10.3969/j.issn.1006-9348.2019.06.025

    XUE D W, YAN Q, GAO X, et al. The control of high order acoustic modes in engine duct[J]. Computer Simulation, 2019, 36(6): 125–130, 185. doi: 10.3969/j.issn.1006-9348.2019.06.025
    [14] SUTLIFF D L, WALKER B E. Artificial noise systems for parametric studies of turbo-machinery aero-acoustics[J]. International Journal of Aeroacoustics, 2016, 15(1-2): 103–130. doi: 10.1177/1475472x16630851
    [15] ARNOLD F, TAPKEN U, BAUERS R, et al. Turbomachinery exhaust noise radiation experiments - part 1: polar directivity measurements[C]//Proc of the 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference). 2008. doi: 10.2514/6.2008-2857
    [16] 黄时春, 英基勇, 高翔, 等. 激发圆形管道内多阶声模态的扬声器阵列控制方法[J]. 声学学报, 2022, 47(4): 521–530. doi: 10.15949/j.cnki.0371-0025.2022.04.005

    HUANG S C, YING J Y, GAO X, et al. A loudspeaker array control method for exciting multi-order acoustic modes in a cylindrical duct[J]. Acta Acustica, 2022, 47(4): 521–530. doi: 10.15949/j.cnki.0371-0025.2022.04.005
    [17] HUANG S, PAN X, YU L, et al. Achieving cylindrical duct modes generation in spinning mode synthesizer via a least-square identification of the global calibration factor[J]. Applied Acoustics, 2022, 186: 108423. doi: 10.1016/j.apacoust.2021.108423
    [18] ALONSO J S, BURDISSO R A. Green's functions for the acoustic field in lined ducts with uniform flow[J]. AIAA Journal, 2007, 45(11): 2677–2687. doi: 10.2514/1.29872
    [19] LOWIS C, JOSEPH P. A focused beamformer technique for separating rotor and stator-based broadband sources[C]//Proc of the 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). 2006. doi: 10.2514/6.2006-2710
    [20] TIKHONOV A. Solution of incorrectly formulated problems and the regularization method[J]. Soviet Math, 1963, 4: 1035–1038.
    [21] 黄时春. 圆形管道内复杂声模态的激发与识别[D]. 上海: 上海交通大学, 2021.
    [22] HILL G. Loudspeaker modelling and design: a practical introduction[M]. New York: Routledge, 2019.
  • 加载中
图(11)
计量
  • 文章访问数:  395
  • HTML全文浏览量:  17
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-18
  • 修回日期:  2023-05-17
  • 录用日期:  2023-06-01
  • 网络出版日期:  2024-04-08
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日