留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

跨声速空腔剪切层动态特征传播特性研究

周方奇 王显圣 杨党国 吴继飞 杨可 董宾

周方奇, 王显圣, 杨党国, 等. 跨声速空腔剪切层动态特征传播特性研究[J]. 实验流体力学, 2024, 38(1): 103-108 doi: 10.11729/syltlx20230066
引用本文: 周方奇, 王显圣, 杨党国, 等. 跨声速空腔剪切层动态特征传播特性研究[J]. 实验流体力学, 2024, 38(1): 103-108 doi: 10.11729/syltlx20230066
ZHOU F Q, WANG X S, YANG D G, et al. Propagation characteristics of dynamic feature in transonic cavity shear layer[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 103-108 doi: 10.11729/syltlx20230066
Citation: ZHOU F Q, WANG X S, YANG D G, et al. Propagation characteristics of dynamic feature in transonic cavity shear layer[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 103-108 doi: 10.11729/syltlx20230066

跨声速空腔剪切层动态特征传播特性研究

doi: 10.11729/syltlx20230066
基金项目: 国家自然科学基金项目(12272399,52130603)
详细信息
    作者简介:

    周方奇:(1986—),男,安徽明光人,博士研究生,助理研究员。研究方向:复杂流动与流致振动噪声研究。E-mail:fqzhou20@126.com

    通讯作者:

    E-mail:nudt18214@163.com

  • 中图分类号: V211.7

Propagation characteristics of dynamic feature in transonic cavity shear layer

  • 摘要: 开式空腔流动发生时,剪切层内旋涡运动与腔内前传声波相互作用,引发空腔自持振荡现象。针对长深比为7的开式空腔,采用脉动压力测试技术,在Ma = 0.9来流条件下开展腔内剪切层动态特征试验研究,通过频谱分析和互相关分析,揭示剪切层动态特征发展机制和模态噪声传播规律。结果表明:剪切层内单调增大的宽频噪声和类余弦分布的模态噪声相互叠加,使剪切层整体动态特征呈波浪上升发展;模态噪声逆流向上行传播,其速度同样呈类余弦分布,变化趋势与模态噪声幅值保持一致。结合Rossiter模态预估理论发现:同频率的上行模态声波与下行旋涡相互作用,产生了类驻波现象,导致模态噪声功率谱密度和传播速度沿流向周期性变化。
  • 图  1  空腔试验模型

    Figure  1.  Cavity test model

    图  2  腔内右侧壁测点位置分布

    Figure  2.  Position of pressure sensors in cavity

    图  3  剪切层内静压系数和脉动压力系数分布

    Figure  3.  Distribution of static pressure and pulsating pressure coefficients in the shear layer

    图  4  剪切层不同位置功率谱密度

    Figure  4.  Power spectral density at different locations within the shear layer

    图  5  各噪声成分平均功率沿流向分布

    Figure  5.  The distribution of average noise power along the flow direction

    图  6  模态噪声幅值沿流向分布

    Figure  6.  Distribution of modal noise amplitude along the flow direction

    图  7  三阶模态噪声互相关函数曲线

    Figure  7.  The cross-correlation function curve of the third-order modal noise

    图  8  模态成分噪声传播速度与功率谱密度幅值分布

    Figure  8.  Amplitude distribution of modal noise propagation velocity and power spectral density

    图  9  三阶模态振荡产生机制示意图

    Figure  9.  Schematic diagram of the mechanism of third-order modal oscillation generation

    表  1  试验和预测结果模态频率

    Table  1.   Experimental and predicted results of the modal frequency

    试验f/Hz 试验Sr Rossiter预估Sr Heller预估Sr
    二阶 223.39 0.601 0.659 0.634
    三阶 395.51 1.065 1.036 0.997
    四阶 549.32 1.479 1.412 1.36
    下载: 导出CSV

    表  2  互相关函数主瓣峰值位置

    Table  2.   The main lobe peak position of the cross-correlation function

    信号滞后时间/ms 模态声波运动速度
    R1,2 −0.90 0.30
    R2,3 −0.73 0.37
    R3,4 −0.53 0.51
    R4,5 −0.67 0.40
    R5,6 −0.77 0.35
    R6,7 −0.40 0.67
    R7,8 −1.13 0.24
    R8,9 −1.00 0.27
    下载: 导出CSV
  • [1] ROSSITER J E. Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[R]. Reports and Memoranda No. 3438, 1964.
    [2] HELLER H H, HOLMES D G, COVERT E E. Flow-induced pressure oscillations in shallow cavities[J]. Journal of Sound and Vibration, 1971, 18(4): 545–553. doi: 10.1016/0022-460x(71)90105-2
    [3] CARR D. An experimental investigation of open cavity pressure oscillations[R]. AD-787-700, 1974.
    [4] [1]吴继飞, 周方奇, 徐来武, 等.基于PIV技术的高速空腔流动演化特性研究[J]. 实验流体力学, 2023, 37(6): 34-41.doi: 10.11729/syltlx20210144.

    WU J F, ZHOU F Q, XU L W, et al. Evolution of high-speed cavity flow based on PIV technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 34-41. doi: 10.11729/syltlx20210144.
    [5] KNISELY C, ROCKWELL D. Self-sustained low-frequency components in an impinging shear layer[J]. Journal of Fluid Mechanics, 1982, 116: 157–186. doi: 10.1017/s002211208200041x
    [6] LIU X F, KATZ J. Vortex-corner interactions in a cavity shear layer elucidated by time-resolved measurements of the pressure field[J]. Journal of Fluid Mechanics, 2013, 728: 417–457. doi: 10.1017/jfm.2013.275
    [7] BIAN S Y, DRISCOLL J F, ELBING B R, et al. Time resolved flow-field measurements of a turbulent mixing layer over a rectangular cavity[J]. Experiments in Fluids, 2011, 51(1): 51–63. doi: 10.1007/s00348-010-1025-7
    [8] CROOK S D, LAU T C W, KELSO R M. Three-dimensional flow within shallow, narrow cavities[J]. Journal of Fluid Mechanics, 2013, 735: 587–612. doi: 10.1017/jfm.2013.519
    [9] SCHMIT R, McGAHA C, TEKELL J, et al. Performance results for the optical turbulence reduction cavity[C]//Proc of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. 2009. doi: 10.2514/6.2009-702
    [10] SCHMIT R, SEMMELMAYER F, HAVERKAMP M, et al. Analysis of cavity passive flow control using high speed shadowgraph images[C]//Proc of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2012. doi: 10.2514/6.2012-738
    [11] SCHMIT R, SEMMELMAYER F, HAVERKAMP M, et al. Examining passive flow control devices with high speed shadowgraph images around a Mach1.5 cavity flow field[C]//Proc of the 6th AIAA Flow Control Conference. 2012. doi: 10.2514/6.2012-3139
    [12] WANG X S, YANG D G, LIU J, et al. Control of pressure oscillations induced by supersonic cavity flow[J]. AIAA Journal, 2020, 58(5): 2070–2077. doi: 10.2514/1.j059014
    [13] 周方奇, 杨党国, 王显圣, 等. 前缘直板扰流对高速空腔的降噪效果分析[J]. 航空学报, 2018, 39(4): 128–138. doi: 10.7527/S1000-6893.2017.21812

    ZHOU F Q, YANG D G, WANG X S, et al. Effect of leading edge plate on high speed cavity noise control[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4): 128–138. doi: 10.7527/S1000-6893.2017.21812
    [14] THANGAMANI V, KNOWLES K, SADDINGTON A. The effects of scaling on high subsonic cavity flow oscillations and control[C]//Proc of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference). 2012. doi: 10.2514/6.2012-2052
    [15] THANGAMANI V, SADDINGTON A, KNOWLES K. An investigation of passive control methods for a large scale cavity model in high subsonic flow[C]//Proc of the 19th AIAA/CEAS Aeroacoustics Conference. 2013. doi: 10.2514/6.2013-2049
    [16] SADDINGTON A J, KNOWLES K, THANGAMANI V. Scale effects on the performance of sawtooth spoilers in transonic rectangular cavity flow[J]. Experiments in Fluids, 2016, 57(1): 1–12. doi: 10.1007/s00348-015-2088-2
    [17] LUO K Y, ZHU W Q, XIAO Z X, et al. Investigation of spectral characteristics by passive control methods past a supersonic cavity[J]. AIAA Journal, 2018, 56(7): 2669–2686. doi: 10.2514/1.j056689
    [18] DUDLEY J, UKEILEY L. Suppression of fluctuating surface pressures in a supersonic cavity flow[C]//Proc of the 5th Flow Control Conference. 2010. doi: 10.2514/6.2010-4974
    [19] DUDLEY J, UKEILEY L. Detached eddy simulation of a supersonic cavity flow with and without passive flow control[C]//Proc of the 20th AIAA Computational Fluid Dynamics Conference. 2011. doi: 10.2514/6.2011-3844
    [20] DUDLEY J G, UKEILEY L. Passively controlled supersonic cavity flow using a spanwise cylinder[J]. Experiments in Fluids, 2014, 55(9): 1810. doi: 10.1007/s00348-014-1810-9
    [21] 杨党国. 内埋武器舱气动声学特性与噪声抑制研究[D]. 绵阳: 中国空气动力研究与发展中心, 2010.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  84
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-05
  • 修回日期:  2023-06-26
  • 录用日期:  2023-06-30
  • 网络出版日期:  2023-07-18
  • 刊出日期:  2024-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日