留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声衬声振响应及其对阻抗影响的实验研究

邱世昊 陈超 李晓东

邱世昊, 陈超, 李晓东. 声衬声振响应及其对阻抗影响的实验研究[J]. 实验流体力学, 2024, 38(1): 57-66 doi: 10.11729/syltlx20230078
引用本文: 邱世昊, 陈超, 李晓东. 声衬声振响应及其对阻抗影响的实验研究[J]. 实验流体力学, 2024, 38(1): 57-66 doi: 10.11729/syltlx20230078
QIU S H, CHEN C, LI X D. Investigation of acoustic liner vibroacoustic response and its influence on impedance[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 57-66 doi: 10.11729/syltlx20230078
Citation: QIU S H, CHEN C, LI X D. Investigation of acoustic liner vibroacoustic response and its influence on impedance[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 57-66 doi: 10.11729/syltlx20230078

声衬声振响应及其对阻抗影响的实验研究

doi: 10.11729/syltlx20230078
基金项目: 国家重点研发计划项目(2018YFA0703300);国家自然科学基金项目(12102026);国家科技重大专项(J2019-II-0006-0026)
详细信息
    作者简介:

    邱世昊:(1999—),男,河北邢台人,硕士研究生。研究方向:气动声学。E-mail:qiushihao@buaa.edu.cn

    通讯作者:

    E-mail:lixd@buaa.edu.cn

  • 中图分类号: O422.4

Investigation of acoustic liner vibroacoustic response and its influence on impedance

  • 摘要: 声衬在高声压级声波激发下产生声振响应,刚性假设不再成立,其结构振动会对吸声产生一定影响。本文针对振动对声衬吸声的影响和声振响应开展实验研究,通过参数化研究,获得了不同工况和不同穿孔板几何参数下声振响应对声阻抗的影响规律。实验结果表明:穿孔板振动会导致声阻在结构共振频率处出现波峰或波谷,吸声系数出现“额外”的吸声波峰或吸声波谷;穿孔率和声压级的增大会减弱振动的影响,且存在一个临界穿孔率;穿孔板参数会影响高声压级下结构振动导致声阻变化的特征;在结构共振频率附近,小孔–面板速度相位差会发生突变,导致相对速度增大,吸声效果改变。
  • 图  1  声阻抗和声振响应测量系统

    Figure  1.  Acoustic impedance and vibroacoustic response measurement system

    图  2  实验设备连接示意图

    Figure  2.  Schematic diagram of experimental equipment connection

    图  3  声衬实验件示意图

    Figure  3.  Schematic diagram of liner

    图  4  L1实验值与经验模型预测声阻对比(LS = 90 dB)

    Figure  4.  Comparison of experimental and predicted resistance of L1 at LS = 90 dB

    图  5  L1实验值与经验模型预测声抗对比(LS = 90 dB)

    Figure  5.  Comparison of experimental and predicted reactance of L1 at LS = 90 dB

    图  6  L1实验值与经验模型预测声阻对比(LS = 146 dB)

    Figure  6.  Comparison of experimental and predicted resistance of L1 at LS = 146 dB

    图  7  L1实验值与经验模型预测声抗对比(LS = 146 dB)

    Figure  7.  Comparison of experimental and predicted reactance of L1 at LS=146 dB

    图  8  L1实验值与经验模型预测吸声系数对比

    Figure  8.  Comparison of experimental and predicted absorption coefficient of L1

    图  9  L1实验件在不同声压级下的声阻抗及吸声系数

    Figure  9.  Experimental results of acoustic impedance and absorption coefficient of L1 at different sound pressure level

    图  10  L3实验件在不同声压级下的声阻抗及吸声系数实验结果

    Figure  10.  Experimental results of acoustic impedance and absorption coefficient of L3 at different sound pressure level

    图  11  L4和L10实验件在不同入射声压级下的声阻

    Figure  11.  Experimental results of acoustic resistance of L4 and L10 at different sound pressure level

    图  12  L3和L4实验件在不同入射声压级下的声阻实验结果图

    Figure  12.  Experimental results of acoustic resistance of L3 and L4 at different sound pressure level

    图  13  L5和L8实验件在不同入射声压级下的声阻

    Figure  13.  Experimental results of acoustic resistance of L5 and L8 at different sound pressure level

    图  14  L1~L3实验件在不同入射声压级下的声阻

    Figure  14.  Experimental results of acoustic resistance of L1~ L3 at different sound pressure level

    图  15  L5~L7实验件在不同入射声压级下的声阻

    Figure  15.  Experimental results of acoustic resistance of L5~ L7 at different sound pressure level

    图  16  振动的穿孔板表面粒子速度分布

    Figure  16.  Particle velocity distribution on the surface of the vibrating perforated plate

    图  17  L1实验件穿孔板振动速度和小孔中空气振动速度幅值对比(LS = 152 dB)

    Figure  17.  Comparison of plate vibration velocity and air particles vibration velocity in holes of L1 at LS = 152 dB

    图  18  L1实验件不同声压级下$\overline {{v_{\rm{p}}}}$和$\overline {{v_{\rm{a}}}}$的相位差

    Figure  18.  The phase difference of $\overline {{v_{\rm{p}}}}$ and $\overline {{v_{\rm{a}}}}$ at different sound pressure level of L1

    表  1  声衬结构参数

    Table  1.   Summary of liner structure parameters

    声衬编号孔径d/mm穿孔率σ/%板厚t/mm腔深D/mm
    L118.40.550
    L218.40.850
    L318.41.050
    L4119.61.050
    L529.40.550
    L629.40.850
    L729.41.050
    L8219.60.550
    L9219.60.850
    L10219.61.050
    下载: 导出CSV
  • [1] NAYFEH A H, KAISER J E, TELIONIS D P. Acoustics of aircraft engine-duct systems[J]. AIAA Journal, 1975, 13(2): 130–153. doi: 10.2514/3.49654
    [2] CUMPSTY N A. Review—A critical review of turbomachinery noise[J]. Journal of Fluids Engineering, 1977, 99(2): 278–293. doi: 10.1115/1.3448745
    [3] MAA D Y. Potential of microperforated panel absorber[J]. The Journal of the Acoustical Society of America, 1998, 104(5): 2861–2866. doi: 10.1121/1.423870
    [4] SIVIAN L J. Acoustic impedance of small orifices[J]. The Journal of the Acoustical Society of America, 1935, 7(2): 94–101. doi: 10.1121/1.1915795
    [5] INGARD U, LABATE S. Acoustic circulation effects and the nonlinear impedance of orifices[J]. The Journal of the Acoustical Society of America, 1950, 22(2): 211–218. doi: 10.1121/1.1906591
    [6] INGARD U, ISING H. Acoustic nonlinearity of an orifice[J]. The Journal of the Acoustical Society of America, 1967, 42(1): 6–17. doi: 10.1121/1.1910576
    [7] MELLING T H. The acoustic impendance of perforates at medium and high sound pressure levels[J]. Journal of Sound and Vibration, 1973, 29(1): 1–65. doi: 10.1016/S0022-460X(73)80125-7
    [8] GUESS A W. Calculation of perforated plate liner parameters from specified acoustic resistance and reactance[J]. Journal of Sound and Vibration, 1975, 40(1): 119–137. doi: 10.1016/S0022-460X(75)80234-3
    [9] YU J, RUIZ M, KWAN H W. Validation of Goodrich perforate liner impedance model using NASA langley test data[C]//Proc of the 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference). 2008. doi: 10.2514/6.2008-2930
    [10] KOOI J W, SARIN S L, FOKKER B V. An experimental study of the acoustic impedance of Helmholtz resonator arrays under a turbulent boundary layer[C]//Proc of the 7th AIAA Aeroacoustics Conference. 1981. doi: 10.2514/6.1981-1998
    [11] CUMMINGS A. The effects of grazing turbulent pipe-flow on the impedance of an orifice[J]. Acta Acustica United With Acustica, 1986, 61(4): 233–242.
    [12] NARK D M, JONES M G, SUTLIFF D L. Modeling of broadband liners applied to the advanced noise control fan[C]//Proc of the 21st AIAA/CEAS Aeroacoustics Conference. 2015. doi: 10.2514/6.2015-2693
    [13] NARK D M, JONES M G, SUTLIFF D L. Further development and assessment of a broadband liner optimization process[C]//Proc of the 22nd AIAA/CEAS Aeroacoustics Conference. 2016. doi: 10.2514/6.2016-2784
    [14] SYED A A, ICHIHASHI F. The modeling and experimental validation of the acoustic impedance of multi-degrees-of-freedom liners[C]//Proc of the 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference). 2008. doi: 10.2514/6.2008-2927
    [15] JONES M G, HOWERTON B M, AYLE E. Evaluation of parallel-element, variable-impedance, broadband acoustic liner concepts[C]//Proc of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference). 2012. doi: 10.2514/6.2012-2194
    [16] JONES M G, WATSON W R, NARK D M, et al. Evaluation of a variable-impedance ceramic matrix composite acoustic liner[C]//Proc of the 20th AIAA/CEAS Aeroacoustics Conference. 2014. doi: 10.2514/6.2014-3352
    [17] JONES M G, WATSON W R, NARK D M, et al. Optimization of variable-depth liner configurations for increased broadband noise reduction[C]//Proc of the 22nd AIAA/CEAS Aeroacoustics Conference. 2016. doi: 10.2514/6.2016-2783
    [18] BECK B S, SCHILLER N H, JONES M G. Impedance assessment of a dual-resonance acoustic liner[J]. Applied Acoustics, 2015, 93(4): 15–22. doi: 10.1016/j.apacoust.2015.01.011
    [19] MEI J, MA G C, YANG M, et al. Dark acoustic metamaterials as super absorbers for low-frequency sound[J]. Nature Communications, 2012, 3: 756. doi: 10.1038/ncomms1758
    [20] LEE J, SWENSON G W. Compact sound absorbers for low frequencies[J]. Noise Control Engineering Journal, 1992, 38(3): 109–117. doi: 10.3397/1.2827811
    [21] TOYODA M, MU R L, TAKAHASHI D. Relationship between Helmholtz-resonance absorption and panel-type absorption in finite flexible microperforated-panel absorbers[J]. Applied Acoustics, 2010, 71(4): 315–320. doi: 10.1016/j.apacoust.2009.10.007
    [22] SAKAGAMI K, MORIMOTO M, YAIRI M. A note on the effect of vibration of a microperforated panel on its sound absorption characteristics[J]. Acoustical Science and Technology, 2005, 26(2): 204–207. doi: 10.1250/ast.26.204
    [23] LEE Y Y, LEE E W M, NG C F. Sound absorption of a finite flexible micro-perforated panel backed by an air cavity[J]. Journal of Sound and Vibration, 2005, 287: 227–243. doi: 10.1016/j.jsv.2004.11.024
    [24] TAKAHASHI D, TANAKA M. Flexural vibration of perforated plates and porous elastic materials under acoustic loading[J]. The Journal of the Acoustical Society of America, 2002, 112(4): 1456–1464. doi: 10.1121/1.1497624
    [25] TOYODA M, TAKAHASHI D. Sound transmission through a microperforated-panel structure with subdivided air cavities[J]. The Journal of the Acoustical Society of America, 2008, 124(6): 3594–3603. doi: 10.1121/1.3001711
    [26] BRAVO T, MAURY C, PINHÈDE C. Enhancing sound absorption and transmission through flexible multi-layer micro-perforated structures[J]. The Journal of the Acoustical Society of America, 2013, 134(5): 3663–3673. doi: 10.1121/1.4821215
    [27] BRAVO T, MAURY C, PINHÈDE C. Sound absorption and transmission through flexible micro-perforated panels backed by an air layer and a thin plate[J]. The Journal of the Acoustical Society of America, 2012, 131(5): 3853–3863. doi: 10.1121/1.3701987
    [28] CHUNG J Y, BLASER D A. Transfer function method of measuring in-duct acoustic properties. I. Theory[J]. The Journal of the Acoustical Society of America, 1980, 68(3): 907–913. doi: 10.1121/1.384778
    [29] CHUNG J Y, BLASER D A. Transfer function method of measuring in-duct acoustic properties. II. Experiment[J]. The Journal of the Acoustical Society of America, 1980, 68(3): 914–921. doi: 10.1121/1.384779
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  368
  • HTML全文浏览量:  15
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-31
  • 修回日期:  2023-06-19
  • 录用日期:  2023-06-30
  • 网络出版日期:  2024-04-08
  • 刊出日期:  2024-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日