留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下航行体首部边界层转捩噪声源定位研究

徐琛 李晓东 柏宝红 黄红波 刘建华

徐琛, 李晓东, 柏宝红, 等. 水下航行体首部边界层转捩噪声源定位研究[J]. 实验流体力学, 2024, 38(2): 1-7 doi: 10.11729/syltlx20230102
引用本文: 徐琛, 李晓东, 柏宝红, 等. 水下航行体首部边界层转捩噪声源定位研究[J]. 实验流体力学, 2024, 38(2): 1-7 doi: 10.11729/syltlx20230102
XU C, LI X D, BAI B H, et al. Research on localization of noise sources in boundary layer transition at the bow of underwater vehicle[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 1-7 doi: 10.11729/syltlx20230102
Citation: XU C, LI X D, BAI B H, et al. Research on localization of noise sources in boundary layer transition at the bow of underwater vehicle[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 1-7 doi: 10.11729/syltlx20230102

水下航行体首部边界层转捩噪声源定位研究

doi: 10.11729/syltlx20230102
基金项目: 国家重大研发计划项目(2018YFA0703300);国家自然科学基金项目(91952301,12102483)
详细信息
    作者简介:

    徐琛:(1989—),男,山东烟台人,博士研究生,工程师。研究方向:气动声学测试技术,信号处理与分析技术。E-mail:cxu2019@buaa.edu.cn

    通讯作者:

    E-mail:lixd@buaa.edu.cn.

  • 中图分类号: O357.5

Research on localization of noise sources in boundary layer transition at the bow of underwater vehicle

  • 摘要: 水下航行体首部边界层转捩区是导流罩自噪声的主要来源之一。为研究水下航行体首部边界层转捩区的噪声特性及声源位置,本文采用缩比SUBOFF模型在高速水洞中开展了试验研究。水洞试验段来流速度3~7 m/s,基于模型长度的雷诺数为107量级,首部表面布置14支脉动压力传感器,测量了首部层流边界层、转捩和湍流边界层的脉动压力场。为定位声源位置,采用传声器阵列进行了水下航行体首部主要噪声源的三维声源定位,定位方法为基于小波变换的函数波束形成方法。试验结果表明:随着来流速度增大,首部边界层转捩起始位置不断向前移动,同时脉动压力频谱中的中频分量显著增加。声源定位结果表明:水下航行体首部主要噪声源呈三维环形分布,且声源所在流向位置与边界层转捩区位置基本重合,研究结果表明边界层转捩区是水下航行体首部的主要噪声源。
  • 图  1  SUBOFF实验模型

    Figure  1.  SUBOFF experiment model

    图  2  试验测试示意图

    Figure  2.  Schematic diagram of experimental testing

    图  3  来流速度6.5 m/s时的脉动压力时域信号

    Figure  3.  Time domain pressure signals of different wall pressure sensors at a flow velocity of 6.5 m/s

    图  4  不同来流速度下的脉动压力均方根对比

    Figure  4.  Comparison of root mean square of fluctuating pressure under different inflow velocities

    图  5  来流速度1.5 m/s时首部边界层脉动压力频谱沿流向变化趋势

    Figure  5.  Tendency of fluctuating pressure spectra on the underwater vehicle at the flow velocity of 1.5 m/s

    图  6  来流速度1.5 m/s时首部边界层脉动压力频谱对比

    Figure  6.  Comparison of fluctuating pressure spectra on the underwater vehicle at the flow velocity of 1.5 m/s

    图  7  来流速度3.2 m/s时首部边界层脉动压力频谱沿流向变化趋势

    Figure  7.  Comparison of fluctuating pressure spectra on the underwater vehicle at the flow velocity of 3.2 m/s

    图  8  来流速度3.2 m/s时首部边界层脉动压力频谱对比

    Figure  8.  Tendency of fluctuating pressure spectra on the underwater vehicle at the flow velocity of 3.2 m/s

    图  9  不同流速下首部边界层转捩起始位置对比

    Figure  9.  Comparison of fluctuating pressure spectra on the underwater vehicle at different flow velocities

    图  10  不同流速下首部边界层脉动压力频谱对比

    Figure  10.  Comparison of fluctuating pressure spectra on the under-water vehicle at different flow velocities

    图  11  来流速度1.0 m/s时MIC 8处的局部间歇度量

    Figure  11.  LIM computed from a segment of a pressure signal taken at 1.0 m/s and MIC 8

    图  12  来流速度1.0 m/s、声源频率100 Hz时的声源分布

    Figure  12.  The source distribution at 100 Hz with flow velocity of 1.0 m/s

    图  13  来流速度4.0 m/s、声源频率400 Hz时的声源分布

    Figure  13.  The source distribution at 400 Hz with the flow velocity of 4.0 m/s

    图  14  来流速度6.5 m/s、声源频率650 Hz时的声源分布

    Figure  14.  The source distribution at 650 Hz with the flow velocity of 6.5 m/s

    表  1  脉动压力传感器流向位置

    Table  1.   The streamwise position of the pressure sensors

    传感器 流向位置x/mm 传感器 流向位置x/mm
    MIC 1 0 MIC 8 250
    MIC 2 50 MIC 9 300
    MIC 3 100 MIC 10 350
    MIC 4 150 MIC 11 400
    MIC 5 175 MIC 12 508
    MIC 6 200 MIC 13 600
    MIC 7 225 MIC 14 700
    下载: 导出CSV
  • [1] 刘进, 吕世金, 高岩, 水下航行体艏部转捩区激励特性试验研究[C]//第三十一届全国水动力学研讨会论文集. 2020.

    LIU J, LYU S J, GAO Y. Experimental study on excitation characteristics of transition zone near the bow of underwater vehicle[C]//Proceedings of the 31st National Conference on hydrodynamics. 2020.
    [2] 俞孟萨, 吴有生, 庞业珍. 国外舰船水动力噪声研究进展概述[J]. 船舶力学, 2007, 11(1): 152–158. doi: 10.3969/j.issn.1007-7294.2007.01.019

    YU M S, WU Y S, PANG Y Z. A review of progress for hydrodynamic noise of ships[J]. Journal of Ship Mechanics, 2007, 11(1): 152–158. doi: 10.3969/j.issn.1007-7294.2007.01.019
    [3] LIU Y Y, PAN C, LIU J H. Intermittent behavior of a bypass transition of boundary layers over an axisymmetric body of revolution[J]. Ocean Engineering, 2023, 286: 115689. doi: 10.1016/j.oceaneng.2023.115689
    [4] MENG X X, CAO L S, SHEN Z B, et al. Numerical investigation on transitional boundary layer of submarine with different bow shapes[C]//Proc of the 10th Conference on Computational Methods in Marine Engineering. 2023. doi: 10.23967/marine.2023.084.
    [5] 刘建华, 徐良浩, 翟树成, 等. 水凝胶对曲面边界层转捩影响研究[C]// 第十二届全国流体力学学术会议论文摘要集. 2022.
    [6] HADDLE G P, SKUDRZYK E J. The physics of flow noise[J]. The Journal of the Acoustical Society of America, 1969, 46(1B): 130–157. doi: 10.1121/1.1911663
    [7] ARAKERI V H. A note on the transition observations on an axisymmetric body and some related fluctuating wall pressure measurements[J]. Journal of Fluids Engineering, 1975, 97(1): 82–86. doi: 10.1115/1.3447222
    [8] LI S, RIVAL D E, WU X H. Sound source and pseudo-sound in the near field of a circular cylinder in subsonic conditions[J]. Journal of Fluid Mechanics, 2021, 919: A43. doi: 10.1017/jfm.2021.404
    [9] MANCINELLI M, PAGLIAROLI T, DI MARCO A, et al. Wavelet decomposition of hydrodynamic and acoustic pressures in the near field of the jet[J]. Journal of Fluid Mechanics, 2017, 813: 716–749. doi: 10.1017/jfm.2016.869
    [10] MERINO-MARTÍNEZ R, SIJTSMA P, SNELLEN M, et al. A review of acoustic imaging methods using phased microphone arrays[J]. CEAS Aeronautical Journal, 2019, 10(1): 197–230. doi: 10.1007/s13272-019-00383-4
    [11] CHEN W Q, ZHONG S Y, HUANG X. Extended-resolution acoustic imaging of low-frequency wave sources by acoustic analogy-based tomography[J]. Journal of Fluid Mechanics, 2020, 899: A12. doi: 10.1017/jfm.2020.461
    [12] PAILHAS Y, PETILLOT Y. Large MIMO sonar systems: a tool for underwater surveillance[C]//Proc of the 2014 Sensor Signal Processing for Defence (SSPD). 2014: 1-5. doi: 10.1109/SSPD.2014.6943332.
    [13] BRACA P, GOLDHAHN R, FERRI G, et al. Distributed information fusion in multistatic sensor networks for underwater surveillance[J]. IEEE Sensors Journal, 2016, 16(11): 4003–4014. doi: 10.1109/JSEN.2015.2431818
    [14] JIANG M, LI X D, TONG W M. Identification and localization of airfoil noise sources at low angles of attack[C]//Proc of the 52nd Aerospace Sciences Meeting. 2014. doi: 10.2514/6.2014-0018.
    [15] BAI B H, LIN D K, LI X D. Identification of flap side-edge two-source mechanism based on phased arrays[J]. AIAA Journal, 2022, 60(1): 249–260. doi: 10.2514/1.j060377
    [16] BAI B H, ZHANG Y Z, LI X D, Identification of the two-sources at the aircraft slat/fuselage juncture based on phased array[J]. Aerospace Science and Technology, 2023, 135: 108186. doi: 10.1016/j.ast.2023.108186.
    [17] MURRAY H H IV, DEVENPORT W J, ALEXANDER W N, et al. Aeroacoustics of a rotor ingesting a planar boundary layer at high thrust[J]. Journal of Fluid Mechanics, 2018, 850: 212–245. doi: 10.1017/jfm.2018.438
    [18] FARGE M. Wavelet transforms and their applications to turbulence[J]. Annual Review of Fluid Mechanics, 1992, 24: 395–458. doi: 10.1146/annurev.fl.24.010192.002143
    [19] CAMUSSI R, GUJ G. Orthonormal wavelet decomposition of turbulent flows: intermittency and coherent structures[J]. Journal of Fluid Mechanics, 1997, 348: 177–199. doi: 10.1017/s0022112097006551
    [20] CHEN W Q, HUANG X. Wavelet-based beamforming for high-speed rotating acoustic source[J]. IEEE Access, 2018, 6: 10231–10239. doi: 10.1109/ACCESS.2018.2795538
    [21] HE J Y, BAI B H, ZHANG Y Z, et al. Wavelet-based functional beamforming method for aeroacoustics moving sources localization[C]//Proc of the 2021 4th International Conference on Information Communication and Signal Processing (ICICSP). 2021: 244-248. doi: 10.1109/ICICSP54369.2021.9611866.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  10
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-07
  • 修回日期:  2023-10-18
  • 录用日期:  2023-10-23
  • 网络出版日期:  2024-04-07

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日