留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高聚物管道流超大尺度结构特征实验研究

禹东峰 刘建华 穆科宇 韩迪熹 钟强

禹东峰, 刘建华, 穆科宇, 等. 高聚物管道流超大尺度结构特征实验研究[J]. 实验流体力学, 2024, 38(2): 1-8 doi: 10.11729/syltlx20230105
引用本文: 禹东峰, 刘建华, 穆科宇, 等. 高聚物管道流超大尺度结构特征实验研究[J]. 实验流体力学, 2024, 38(2): 1-8 doi: 10.11729/syltlx20230105
YU D F, LIU J H, MU K Y, et al. Experimental study of the characteristics of very-large-scale motions in polymer pipe flows[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 1-8 doi: 10.11729/syltlx20230105
Citation: YU D F, LIU J H, MU K Y, et al. Experimental study of the characteristics of very-large-scale motions in polymer pipe flows[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 1-8 doi: 10.11729/syltlx20230105

高聚物管道流超大尺度结构特征实验研究

doi: 10.11729/syltlx20230105
基金项目: 国家自然科学基金项目(91952301,52179081)
详细信息
    作者简介:

    禹东峰:(2002—),男,河南驻马店人,硕士研究生。研究方向:水动力学。E-mail:15501120220@163.com

    通讯作者:

    通信作者E-mail:qzhong@cau.edu.cn

  • 中图分类号: O368;O357.5

Experimental study of the characteristics of very-large-scale motions in polymer pipe flows

  • 摘要: 高聚物减阻在管道输送中发挥着重要作用。管道湍流中的相干结构与高聚物减阻机理密切相关。实际工程中的管道流动大多为高雷诺数流动,高雷诺数管道流中最主要的含能相干结构为10倍管径量级的超大尺度结构。本文对高雷诺数高聚物管道流中的超大尺度结构进行实验研究。开展了4种高聚物浓度(以质量分数表征)、3种雷诺数共12组TR-PIV(Time-Resolved Particle Image Velocimetry)实验,使用预乘谱对超大尺度结构的尺度和强度特征进行了分析。研究结果表明,在相同雷诺数下,随着高聚物浓度增大,中心流区超大尺度结构的尺度和强度均明显增大,且与大尺度结构的强度之比也显著增大。在较高浓度下,超大尺度结构取代大尺度结构,成为了外区的主导含能结构。
  • 图  1  管道湍流生成装置

    Figure  1.  Pipeline turbulence generator

    图  2  PIV测量段布置示意图

    Figure  2.  Schematic layout of the PIV measurement section

    图  3  PIV基本计算原理图

    Figure  3.  Schematic diagram of PIV basic calculation

    图  4  Discovery DHR–2流变仪

    Figure  4.  Discovery DHR–2 rheometer

    图  5  PIV实验各测次管道时均流速剖面分布

    Figure  5.  The time-averaged velocity profile distribution of each test pipe in PIV experiment

    图  6  Q1测次预乘谱

    Figure  6.  Q1 test pipeline premultiplied power spectrum

    图  7  不同雷诺数下超大尺度结构预乘谱峰值对应尺度随位置的变化

    Figure  7.  Scale versus position curves corresponding to peak premultiplication spectra of very-large-scale structures with different Reynolds numbers

    图  8  y/R = 0.9处超大尺度结构预乘谱峰值对应尺度随高聚物质量分数的变化

    Figure  8.  y/R = 0.9 positional very-large-scale structural premultiplica-tion spectral peak corresponding to the scale variation curve with polymer concentration

    图  9  不同雷诺数下大尺度结构与超大尺度结构积分尺度随位置的变化

    Figure  9.  Variation curves of large-scale and very-large-scale integral scales with position at different Reynolds numbers

    图  10  y/R = 0.9处积分尺度随质量分数的变化

    Figure  10.  y/R = 0.9 positional integral scale versus concentration curve

    图  11  超大尺度结构与大尺度结构预乘谱峰值比值随位置的变化

    Figure  11.  Variation curves of the ratio of premultiplication spectra peak for very-large-scale structures to large-scale structures with position

    图  12  y/R = 0.9处超大尺度结构与大尺度结构预乘谱峰值比值随质量分数的变化

    Figure  12.  y/R = 0.9 positional very-large-scale and large-scale premulti-plied spectral peak ratios versus concentration curves

    表  1  各测次实验参数

    Table  1.   Experimental parameters for each measurement

    测次 c/
    10−6
    μ/
    (10−3pa·s)
    p/
    kPa
    Re u* $\overline u $/
    (m·s−1)
    Reτ
    Q1 0 0.89 3.25 57752 0.11 2.57 2562
    Q2 0 0.89 6.25 83595 0.16 3.72 3553
    Q3 0 0.89 10.60 112134 0.21 4.99 4627
    P11 30 0.93 3.40 57634 0.12 2.68 2507
    P12 30 0.93 6.60 84323 0.16 3.92 3494
    P13 30 0.93 10.88 110430 0.21 5.14 4486
    P21 60 0.97 3.68 59835 0.12 2.91 2501
    P22 60 0.97 7.05 85773 0.17 4.16 3462
    P23 60 0.97 11.92 116144 0.22 5.63 4502
    P31 100 1.04 4.28 60288 0.13 3.14 2516
    P32 100 1.04 8.32 89231 0.18 4.64 3508
    P33 100 1.04 13.74 118462 0.23 6.16 4508
    下载: 导出CSV
  • [1] 张兵强, 梁光川, 郦利民, 等. 高分子聚合物的湍流减阻机理[J]. 油气储运, 2012, 31(12): 895–897. doi: 10.6047/j.issn.1000-8241.2012.12.005

    ZHANG B Q, LIANG G C, LI L M, et al. Mechanism of turbulent drag reduction of polymer[J]. Oil & Gas Storage and Transportation, 2012, 31(12): 895–897. doi: 10.6047/j.issn.1000-8241.2012.12.005
    [2] TOMS B A. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers[C]//Proc of the 1st International Congress on Rheology, Volume 2. 1948: 135-141.
    [3] 左艳梅. 超高分子量聚长链α-烯烃的合成及应用[D]. 杭州: 浙江大学, 2006.

    ZUO Y M. Synthesis and application of the poly (long chain α-olefins) with ultra high molecular weight[D]. Hangzhou: Zhejiang University, 2006.
    [4] KLINE S J, REYNOLDS W C, SCHRAUB F A, et al. The structure of turbulent boundary layers[J]. Journal of Fluid Mechanics, 1967, 30(4): 741–773. doi: 10.1017/s0022112067001740
    [5] 郑晓静, 王国华. 高雷诺数壁湍流的研究进展及挑战[J]. 力学进展, 2020, 50: 202001. doi: 10.6052/1000-0992-19-009

    ZHENG X J, WANG G H. Progresses and challenges of high Reynolds number wall-bounded turbulence[J]. Advances in Mechanics, 2020, 50: 202001. doi: 10.6052/1000-0992-19-009
    [6] ADRIAN R J. Hairpin vortex organization in wall turbulence[J]. Physics of Fluids, 2007, 19(4): 457. doi: 10.1063/1.2717527
    [7] ADRIAN R J, MEINHART C D, TOMKINS C D. Vortex organization in the outer region of the turbulent boundary layer[J]. Journal of Fluid Mechanics, 2000, 422(1): 1–54. doi: 10.1017/S0022112000001580
    [8] DUAN Y C, ZHONG Q, WANG G Q, et al. Additional spanwise vortices near the free surface in open channel flows[J]. Journal of Fluid Mechanics, 2021, 924: R3. doi: 10.1017/jfm.2021.641
    [9] ZHONG Q, LI D X, CHEN Q G, et al. Coherent structures and their interactions in smooth open channel flows[J]. Environmental Fluid Mechanics, 2015, 15(3): 653–672. doi: 10.1007/s10652-014-9390-z
    [10] ADRIAN R J, MARUSIC I. Coherent structures in flow over hydraulic engineering surfaces[J]. Journal of Hydraulic Research, 2012, 50(5): 451–464. doi: 10.1080/00221686.2012.729540
    [11] DUAN Y C, ZHONG Q, WANG G Q, et al. Contributions of different scales of turbulent motions to the mean wall-shear stress in open channel flows at low-to-moderate Reynolds numbers[J]. Journal of Fluid Mechanics, 2021, 918: A40. doi: 10.1017/jfm.2021.236
    [12] DUAN Y C, CHEN Q G, LI D X, et al. Contributions of very large-scale motions to turbulence statistics in open channel flows[J]. Journal of Fluid Mechanics, 2020, 892: A3. doi: 10.1017/jfm.2020.174
    [13] ZHONG Q, CHEN Q G, WANG H, et al. Statistical analysis of turbulent super-streamwise vortices based on observations of streaky structures near the free surface in the smooth open channel flow[J]. Water Resources Research, 2016, 52(5): 3563–3578. doi: 10.1002/2015wr017728
    [14] HUTCHINS N, MARUSIC I. Large-scale influences in near-wall turbulence[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1852): 647-664. DOI: 10.1098/rsta.2006.1942.
    [15] MARUSIC I, MATHIS R, HUTCHINS N. Predictive model for wall-bounded turbulent flow[J]. Science, 2010, 329(5988): 193–196. doi: 10.1126/science.1188765
    [16] McCOMB W D, RABIE L H. Local drag reduction due to injection of polymer solutions into turbulent flow in a pipe. Part I: Dependence on local polymer concentration[J]. AIChE Journal, 1982, 28(4): 547–557. doi: 10.1002/aic.690280405
    [17] MCCOMB W D, RABIE L H. Local drag reduction due to injection of polymer solutions into turbulent flow in a pipe. Part II: laser-doppler measurements of turbulent structure[J]. AIChE Journal, 1982, 28(4): 558–565. doi: 10.1002/aic.690280406
    [18] 王超伟, 杨绍琼, 姜楠. 高分子溶液对湍流边界层减阻机理的实验研究[J]. 应用力学学报, 2021, 38(6): 2384–2391. doi: 10.11776/cjam.38.06.A127

    WANG C W, YANG S Q, JIANG N. Experimental investigation of drag reduction in turbulent boundary layer with polymer additives solution[J]. Chinese Journal of Applied Mechanics, 2021, 38(6): 2384–2391. doi: 10.11776/cjam.38.06.A127
    [19] GUAN X L, YAO S Y, JIANG N. A study on coherent structures and drag-reduction in the wall turbulence with polymer additives by TRPIV[J]. Acta Mechanica Sinica, 2013, 29(4): 485–493. doi: 10.1007/s10409-013-0035-0
    [20] KIM K, LI C F, SURESHKUMAR R, et al. Effects of polymer stresses on eddy structures in drag-reduced turbulent channel flow[J]. Journal of Fluid Mechanics, 2007, 584: 281–299. doi: 10.1017/s0022112007006611
    [21] DUBIEF Y, TERRAPON V E, WHITE C M, et al. New answers on the interaction between polymers and vortices in turbulent flows[J]. Flow, Turbulence and Combustion, 2005, 74(4): 311–329. doi: 10.1007/s10494-005-9002-6
    [22] DE ANGELIS E, CASCIOLA C M, PIVA R. DNS of wall turbulence: dilute polymers and self-sustaining mechanisms[J]. Computers & Fluids, 2002, 31(4-7): 495–507. doi: 10.1016/s0045-7930(01)00069-x
    [23] SIBILLA S, BARON A. Polymer stress statistics in the near-wall turbulent flow of a drag-reducing solution[J]. Physics of Fluids, 2002, 14(3): 1123–1136. doi: 10.1063/1.1448497
    [24] KIM K, ADRIAN R J, BALACHANDAR S, et al. Dynamics of hairpin vortices and polymer-induced turbulent drag reduction[J]. Physical Review Letters, 2008, 100(13): 134504. doi: 10.1103/PhysRevLett.100.134504
    [25] ZHU L, XI L. Vortex dynamics in low- and high-extent polymer drag reduction regimes revealed by vortex tracking and conformation analysis[]. Physics of Fluids, 2019, 31(9): 095103. doi: 10.1063/1.5118251.
    [26] ZHANG Y B, BODENSCHATZ E, XU H T, et al. Experimental observation of the elastic range scaling in turbulent flow with polymer additives[J]. Science Advances, 2021, 7(14): eabd3525. doi: 10.1126/sciadv.abd3525
    [27] 盖春燕. 高泥化煤泥水特性与处理工艺研究[D]. 太原: 太原理工大学, 2006.

    GAI C Y. The characteristics and processing technology study of high marlaceous slurry[D]. Taiyuan: Taiyuan University of Technology, 2006.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  14
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-14
  • 修回日期:  2023-11-09
  • 录用日期:  2024-01-04
  • 网络出版日期:  2024-04-10

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日