留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下航行体边界层转捩流动结构实验研究

刘瑶瑶 潘翀 郭辉 刘建华

刘瑶瑶, 潘翀, 郭辉, 等. 水下航行体边界层转捩流动结构实验研究[J]. 实验流体力学, 2024, 38(2): 1-9 doi: 10.11729/syltlx20230107
引用本文: 刘瑶瑶, 潘翀, 郭辉, 等. 水下航行体边界层转捩流动结构实验研究[J]. 实验流体力学, 2024, 38(2): 1-9 doi: 10.11729/syltlx20230107
LIU Y Y, PAN C, GUO H, et al. Experimental study on flow structure of transition boundary layer of the underwater vehicles[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 1-9 doi: 10.11729/syltlx20230107
Citation: LIU Y Y, PAN C, GUO H, et al. Experimental study on flow structure of transition boundary layer of the underwater vehicles[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 1-9 doi: 10.11729/syltlx20230107

水下航行体边界层转捩流动结构实验研究

doi: 10.11729/syltlx20230107
基金项目: 国家自然科学基金项目(91952301)
详细信息
    作者简介:

    刘瑶瑶:(1994—),女,辽宁葫芦岛人,博士研究生。研究方向:边界层转捩。E-mail:liuyaoyao1705@buaa.edu.cn

    通讯作者:

    E-mail:panchong@buaa.edu.cn

  • 中图分类号: O357.4

Experimental study on flow structure of transition boundary layer of the underwater vehicles

  • 摘要: 采用激光诱导荧光(Laser Induced Fluorescence,LIF)和粒子图像测速(Particle Image Velocimetry,PIV)技术,对自由湍流条件下SUBOFF模型转捩边界层中的流动结构进行精细测量。实验在北京航空航天大学大型低速回流水洞中进行,SUBOFF模型长度为1.436 m,基于模型长度和来流速度的实验雷诺数为3.35 × 105。采用流动显示灰度场和有限时间李雅普诺夫指数(Finite-Time Lyapunov Exponents,FTLEs)对转捩边界层中的涡结构进行识别,并对转捩过程中发卡涡、二次涡等典型拟序结构的生成演化过程进行分析。采用两点相关方法提取转捩区拟序结构,同时采用椭圆拟合方法计算相干结构倾角,计算结果表明,结构倾角沿法向先增大后减小,在边界层附近达到最大值。为深入研究转捩流动结构特性,发展了基于流动显示的湍流/非湍流界面(T/NT)识别方法,并对界面几何特性进行了研究。研究结果表明,在转捩过程中,界面的法向高度和分形维数沿程增长。
  • 图  1  实验装置及实验模型

    Figure  1.  Schematic illustration of the experimental setup

    图  2  格栅湍流沿程发展

    Figure  2.  The development of turbulence intensity of FST

    图  3  LIF流动显示xy平面内的瞬时流动结构

    Figure  3.  LIF-visualized vortical structures in xy plane at four snapshots

    图  4  FTLE在xy平面内的涡结构演化过程。(a1~c1)孤立发卡涡结构及诱导的二次涡,(a2~c2)发卡涡包

    Figure  4.  Illustration of the evolution of vortex structures by Finite-Time Lyapunov Exponents method in xy plane. (a1 – c1) Hairpin vortex and induced secondary vortex in transition, (a2 – c2) hairpin vortex packets

    图  5  不同法向高度的两点相关系数分布,从上至下对应法向高度为yn/δ = 0.10、0.25、0.50、1.00、1.25,(a1~e1)基于LIF流动显示的两点相关系数分布,(a1~e1)基于FTLEs的两点相关系数分布

    Figure  5.  The contour of two points correlation coefficient at different normal positions. Five rows from the top to the bottom are the results at yn/δ = 0.10, 0.25, 0.50, 1.00 and 1.25, respectively. (a1 – e1) two-point correlation distribution based on LIF flow visualization, (a2 – e2) two-point correlation distribution based on FTLEs

    图  6  x/L = 0.50处拟序结构结构倾角沿法向高度的变化

    Figure  6.  Inclination angle of coherent structure along normal direction at x/L = 0.50

    图  7  灰度场及界面识别

    Figure  7.  Grayscale field and the detected interface

    图  8  不同流向位置界面高度概率分布

    Figure  8.  The probability density function of the interface position

    图  9  x/L为0.45、0.5、0.55时的分形维数

    Figure  9.  The fractal dimension by the box-counting algorism at x/L = 0.45,0.5 and 0.55

  • [1] 陈久芬, 徐洋, 蒋万秋, 等. 升力体外形高超声速边界层转捩红外测量实验[J]. 实验流体力学. doi: 10.11729/syltlx20220030.

    CHEN Jiufen, XU Yang, JIANG Wanqiu, et al. Infrared thermogram measurement experiment of hypersonic boundary-layer transition of a lifting body[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220030.
    [2] 张石玉, 赵俊波, 付增良, 等. 钝锥动态转捩风洞试验[J]. 实验流体力学, 2022, 36(6): 61–66. doi: 10.11729/syltlx20210120

    ZHANG S Y, ZHAO J B, FU Z L, et al. Dynamic boundary layer transition wind tunnel test of blunt cone[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 61–66. doi: 10.11729/syltlx20210120
    [3] 李存标, 吴介之. 壁流动中的转捩[J]. 力学进展, 2009, 39(4): 480–507. doi: 10.6052/1000-0992-2009-4-J2009-008

    LEE C B, WU J Z. Transition in wall-bounded flows[J]. Advances in Mechanics, 2009, 39(4): 480–507. doi: 10.6052/1000-0992-2009-4-J2009-008
    [4] SREENIVAS K, HYAMS D, MITCHELL B, et al. Physics based simulation of Reynolds number effects in vortex intensive incompressible flows[C]//Proc of the RTO AVT Symposium on “Advanced Flow Management: Part A – Vortex Flows and High Angle of Attack for Military Vehicles”, RTO-mp-069(I). 2001.
    [5] PANTELATOS D K, MATHIOULAKIS D S. Experimental flow study over a blunt-nosed axisymmetric body at incidence[J]. Journal of Fluids and Structures, 2004, 19(8): 1103–1115. doi: 10.1016/j.jfluidstructs.2004.07.004
    [6] GROSS A, KREMHELLER A, FASEL H. Simulation of flow over suboff bare hull model[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011. doi: 10.2514/6.2011-290.
    [7] QUICK H, WIDJAJA R, ANDERSON B, et al. Phase I experimental testing of a generic submarine model in the DSTO low speed wind tunnel[R]. DSTO-TN-1101, 2012.
    [8] ASHOK A, SMITS A. The turbulent wake of a submarine model at varying pitch and yaw angle[C]//Proc of the 18th Australasian Fluid Mechanics Conference. 2012.
    [9] 潘家鑫, 耿子海, 李国强, 等. 基于水洞激光诱导荧光技术的不同气动构型流动特性研究[J]. 气动研究与实验, 2022, 34(2): 100–107. doi: 10.12050/are20220212

    PAN J X, GENG Z H, LI G Q, et al. Research on the flow characteristics of different aerodynamic configurations based on water tunnel laser-induced fluorescence technology[J]. Aerodynamic Research & Experiment, 2022, 34(2): 100–107. doi: 10.12050/are20220212
    [10] SAEIDINEZHAD A, DEHGHAN A A, DEHGHAN MANSHADI M. Nose shape effect on the visualized flow field around an axisymmetric body of revolution at incidence[J]. Journal of Visualization, 2015, 18(1): 83–93. doi: 10.1007/s12650-014-0226-1
    [11] SAEIDINEZHAD A, DEHGHAN A A, DEHGHAN MANSHADI M. Experimental investigation of hydrodyna-mic characteristics of a submersible vehicle model with a non-axisymmetric nose in pitch maneuver[J]. Ocean Engineering, 2015, 100: 26–34. doi: 10.1016/j.oceaneng.2015.03.010
    [12] LEE S K. Longitudinal development of flow-separation lines on slender bodies in translation[J]. Journal of Fluid Mechanics, 2018, 837: 627–639. doi: 10.1017/jfm.2017.886
    [13] ASHOK A, VAN BUREN T, SMITS A J. The structure of the wake generated by a submarine model in yaw[J]. Experiments in Fluids, 2015, 56(6): 123. doi: 10.1007/s00348-015-1997-4
    [14] ASHOK A, VAN BUREN T, SMITS A. Asymmetries in the wake of a submarine modelinpitch[J]. Journal of Fluid Mechanics, 2015, 774: 416–442. doi: 10.1017/jfm.2015.277
    [15] KUMAR P, MAHESH K. Large-eddy simulation of flow over an axisymmetric body of revolution[J]. Journal of Fluid Mechanics, 2018, 853: 537–563. doi: 10.1017/jfm.2018.585
    [16] MORSE N, MAHESH K. Large-eddy simulation and streamline coordinate analysis of flow over an axisymmetric hull[J]. Journal of Fluid Mechanics, 2021, 926: A18. doi: 10.1017/jfm.2021.714
    [17] MANOVSKI P, JONES M B, HENBEST S M, et al. Boundary layer measurements over a body of revolution using long-distance particle image velocimetry[J]. Inter-national Journal of Heat and Fluid Flow, 2020, 83: 108591. doi: 10.1016/j.ijheatfluidflow.2020.108591
    [18] PAN C, XUE D, XU Y, et al. Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(10): 104704. DOI: 10.1007/s11433-015-5719-y.
    [19] HE G S, PAN C, FENG L H, et al. Evolution of Lagrangian coherent structures in a cylinder-wake disturbed flat plate boundary layer[J]. Journal of Fluid Mechanics, 2016, 792: 274–306. doi: 10.1017/jfm.2016.81
    [20] HALLER G. Lagrangian coherent structures[J]. Annual Review of Fluid Mechanics, 2015, 47: 137–162. doi: 10.1146/annurev-fluid-010313-141322
    [21] GREEN M A, ROWLEY C W, HALLER G. Detection of Lagrangian coherent structures in three-dimensional turbulence[J]. Journal of Fluid Mechanics, 2007, 572: 111–120. doi: 10.1017/s0022112006003648
    [22] 杨强, 袁先旭, 陈坚强, 等. 不可压壁湍流中基本相干结构[J]. 空气动力学学报, 2020, 38(1): 82–99. doi: 10.7638/kqdlxxb-2019.0117

    YANG Q, YUAN X X, CHEN J Q, et al. On elementary coherent structures in incompressible wall-bounded turbulence[J]. Acta Aerodynamica Sinica, 2020, 38(1): 82–99. doi: 10.7638/kqdlxxb-2019.0117
    [23] 王轩, 范子椰, 陈乐天, 等. 流向凹曲率壁面湍流边界层的TRPIV实验研究[J]. 实验流体力学, 2022, 36(6): 1–9. doi: 10.11729/syltlx20210084

    WANG X, FAN Z Y, CHEN L T, et al. Experimental study of TRPIV for turbulent boundary layer of longitudinal concave curvature wall[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 1–9. doi: 10.11729/syltlx20210084
    [24] PAN C, WANG J J, ZHANG C. Identification of Lagrangian coherent structures in the turbulent boundary layer[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52(2): 248-257. DOI: 10.1007/s11433-009-0033-1.
    [25] 李思成, 吴迪, 崔光耀, 等. 低雷诺数沟槽表面湍流/非湍流界面特性的实验研究[J]. 力学学报, 2020, 52(6): 1632–1644. doi: 10.6052/0459-1879-20-211

    LI S C, WU D, CUI G Y, et al. Experimental study on properties of turbulent/non-turbulent interface over riblets surfaces at low Reynolds numbers[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1632–1644. doi: 10.6052/0459-1879-20-211
    [26] LONG Y G, WU D, WANG J J. A novel and robust method for the turbulent/non-turbulent interface detection[J]. Experiments in Fluids, 2021, 62(7): 138. doi: 10.1007/s00348-021-03231-6
    [27] EISMA J, WESTERWEEL J, VAN DE WATER W. Do coherent structures organize scalar mixing in a turbulent boundary layer?[J]. Journal of Fluid Mechanics, 2021, 929: A14. doi: 10.1017/jfm.2021.821
    [28] XU C Y, LONG Y G, WANG J J. Entrainment mechanism of turbulent synthetic jet flow[J]. Journal of Fluid Mechanics, 2023, 958: A31. doi: 10.1017/jfm.2023.102
    [29] GAMPERT M, KLEINHEINZ K, PETERS N, et al. Experimental and numerical study of the scalar turbulent/non-turbulent interface layer in a jet flow[J]. Flow, Turbulence and Combustion, 2014, 92(1): 429–449. doi: 10.1007/s10494-013-9471-y
    [30] HOLZNER M, LIBERZON A, NIKITIN N, et al. Small-scale aspects of flows in proximity of the turbulent/nonturbulent interface[J]. Physics of Fluids, 2007, 19(7): 071702. doi: 10.1063/1.2746037
    [31] WESTERWEEL J, HOFMANN T, FUKUSHIMA C, et al. The turbulent/non-turbulent interface at the outer boundary of a self-similar turbulent jet[J]. Experiments in Fluids, 2002, 33(6): 873–878. doi: 10.1007/s00348-002-0489-5
    [32] MANDELBROT B B. The fractal geometry of nature[M]. San Francisco: W. H. Freeman, 1982.
  • 加载中
图(9)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  7
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-16
  • 修回日期:  2023-12-14
  • 录用日期:  2023-12-18
  • 网络出版日期:  2024-04-01

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日