留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

密度分层介质中水下航行体绕流涡演化特性

张彬 周根水 高德宝 杜欣明 樊晓冰 刘建华

张彬, 周根水, 高德宝, 等. 密度分层介质中水下航行体绕流涡演化特性[J]. 实验流体力学, 2024, 38(2): 1-9 doi: 10.11729/syltlx20230137
引用本文: 张彬, 周根水, 高德宝, 等. 密度分层介质中水下航行体绕流涡演化特性[J]. 实验流体力学, 2024, 38(2): 1-9 doi: 10.11729/syltlx20230137
ZHANG B, ZHOU G S, GAO D B, et al. Vortex evolution of the flow around an underwater vehicle in density-stratified flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 1-9 doi: 10.11729/syltlx20230137
Citation: ZHANG B, ZHOU G S, GAO D B, et al. Vortex evolution of the flow around an underwater vehicle in density-stratified flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 1-9 doi: 10.11729/syltlx20230137

密度分层介质中水下航行体绕流涡演化特性

doi: 10.11729/syltlx20230137
基金项目: 国家自然科学基金项目(91952301,91852101)
详细信息
    作者简介:

    张彬:(1997—),男,浙江台州人,助理工程师。研究方向:边界层数值模拟研究。E-mail:zhangbin@cssrc.com.cn

    通讯作者:

    E-mail:jhliu@cssrc.com.cn

  • 中图分类号: TV131.2

Vortex evolution of the flow around an underwater vehicle in density-stratified flow

  • 摘要: 在真实海洋环境中,海水存在密度分层。当水下航行器在密度分层界面附近航行时,其尾流会破坏初始密度分层界面,形成分层尾迹。分层尾迹是非声目标特征之一,分层尾迹探测已成为水下航行体探测的新兴技术。为建立分层环境下水下航行体尾迹探测的理论基础和方法,应先探明水下航行体绕流涡系在密度分层介质中的发展演化特性。本文以缩比SUBOFF模型为研究对象,开展了实验测试和大涡模拟,得到了水下航行体绕流涡系在密度分层介质中的精细流场,大涡模拟结果、实验测试结果与相关文献测试结果基本吻合。研究发现:由于模型尾部分离涡存在强非定常性,尾流中盐水与淡水的掺混表现出多尺度特征;较强的孤立涡结构在掺混分层流体的过程中,逐渐演化为规则结构并脱离分层主界面,分层界面在一定宽度范围内整体上呈现出离散特征。研究结果表明,基于密度梯度的尾迹探测手段可以对水下航行体尾流场进行有效探测。
  • 图  1  中纬度海洋的典型密度分布

    Figure  1.  Representative density profile for the ocean at mid-latitudes

    图  2  大型分层流水池

    Figure  2.  Large stratified water channel

    图  3  分层密度分布

    Figure  3.  Density distribution of the pycnocline

    图  4  SUBOFF模型示意图

    Figure  4.  Schematic of SUBOFF model

    图  5  PIV测量系统现场布置

    Figure  5.  Layout of PIV measurement system

    图  6  计算域示意图

    Figure  6.  Schematic of computation domain

    图  7  中横截面的流向速度结果对比

    Figure  7.  Comparison of axial velocities in the mid-transverse section

    图  8  表面压力系数随流向分布

    Figure  8.  Cp on the hull and the fairwater surface

    图  9  y = 0截面的时均密度分布与涡量分布

    Figure  9.  Time-averaged distribution of density and vorticity in the mid-longitudinal section

    图  10  SUBOFF模型绕流涡结构(Q = 500 s−2等值面)

    Figure  10.  Three-dimensional vortex around SUBOFF (isosurface of Q = 500 s−2

    图  11  指挥台及平行中体周围涡结构(Q = 500 s−2等值面)

    Figure  11.  Three-dimensional vortex near the sail and the midbody of SUBOFF (Isosurface of Q = 500 s−2

    图  12  x = 0.5L处中纵截面上下侧湍动能对比

    Figure  12.  Comparison of turbulent kinetic energy on the upper and lower sides of the mid-longitudinal section at x = 0.5L

    图  13  尾部收缩段涡结构(Q = 500 s−2等值面)

    Figure  13.  Hairpin vortex near the stern of SUBOFF (Isosurface of Q = 500 s−2

    图  14  t = 5.6 s时刻y = 0截面瞬时密度分布和涡量分布

    Figure  14.  Instantaneous distribution of density and vorticity in the longitudinal section at t = 5.6 s

    图  15  尾流涡量演化

    Figure  15.  Vorticity evolution in the wake

    图  16  t = 5.60 s时刻|g*|的空间分布

    Figure  16.  Distribution of |g*| at time t = 5.60 s

  • [1] MILES J W. Internal waves generated by a horizontally moving source[J]. Geophysical Fluid Dynamics, 1971, 2(1): 63–87. doi: 10.1080/03091927108236052
    [2] SPEDDING G R. Wake signature detection[J]. Annual Review of Fluid Mechanics, 2014, 46: 273–302. doi: 10.1146/annurev-fluid-011212-140747
    [3] LIN J T, PAO Y H. Wakes in stratified fluids[J]. Annual Review of Fluid Mechanics, 1979, 11: 317–338. doi: 10.1146/annurev.fl.11.010179.001533
    [4] SPEDDING G R. The evolution of initially turbulent bluff-body wakes at high internal Froude number[J]. Journal of Fluid Mechanics, 1997, 337: 283–301. doi: 10.1017/s0022112096004557
    [5] 姚志崇, 陆林章, 张军, 等. 分层流中水下旋涡特征试验探索[C]//第九届全国水动力学学术会议暨第二十二届全国水动力学研讨会. 2009.

    YAO Z, LU L, ZHANG J, et al. Validation of numerical simulation of the flow around an appended axisymmetric body of revolution[C]// Proceedings of the 16th National Hydrodynamics Academic Conference and the 32nd National Hydrodynamics Symposium. 2009.
    [6] LIU S, HE G, WANG Z, et al. Resistance and flow field of a submarine in a density stratified fluid[J]. Ocean Engineering, 2020, 217: 107934. doi: 10.1016/j.oceaneng.2020.107934
    [7] KUMAR P, MAHESH K. Large-eddy simulation of flow over an axisymmetric body of revolution[J]. Journal of Fluid Mechanics, 2018, 853: 537–563. doi: 10.1017/jfm.2018.585
    [8] KUMAR P, MAHESH K. Analysis of axisymmetric boundary layers[J]. Journal of Fluid Mechanics, 2018, 849: 927–941. doi: 10.1017/jfm.2018.449
    [9] 曲毅, 吴钦, 黄彪, 等. 中高速水下航行体绕流场数值计算与验证[C]//第十六届全国水动力学学术会议暨第三十二届全国水动力学研讨会论文集(上册). 2021: 745-752.

    QU Y, WU Q, HUANG B, et al. Validation of numerical simulation of the flow around an appended axisymmetric body of revolution[C]// Proceedings of the 16th National Hydrodynamics Academic Conference and the 32nd National Hydrodynamics Symposium. 2021: 745-752.
    [10] SHARMAN R D, WURTELE M G. Ship waves and lee waves[J]. Journal of the Atmospheric Sciences, 1983, 40(2): 396–427. doi: 10.1175/1520-0469(1983)0402.0.CO;2
    [11] GOURLAY M J, ARENDT S C, FRITTS D C, et al. Numerical modeling of initially turbulent wakes with net momentum[J]. Physics of Fluids, 2001, 13(12): 3783–3802. doi: 10.1063/1.1412246
    [12] ASNAGHI A, SVENNBERG U, BENSOW R E. Large eddy simulations of cavitating tip vortex flows[J]. Ocean Engineer-ing, 2020, 195: 106703. doi: 10.1016/j.oceaneng.2019.106703
    [13] Liu H L, Huang T. Measurements of flows over an axisymmetric body with various appendages in a wind tunnel: the DARPA SUBOFF experimental program[C]// Proceedings of the 19th Symposium on Naval Hydrodyna-mics. 1992.
    [14] SIMPSON R L. Junction flows[J]. Annual Review of Fluid Mechanics, 2001, 33: 415–443. doi: 10.1146/annurev.fluid.33.1.415
  • 加载中
图(16)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  9
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-25
  • 修回日期:  2023-11-22
  • 录用日期:  2023-11-24
  • 网络出版日期:  2024-04-10

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日