留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于标度律的壁湍流运动分解与雷诺数效应

胡锐锋

胡锐锋. 基于标度律的壁湍流运动分解与雷诺数效应[J]. 实验流体力学, 2024, 38(4): 1-15 doi: 10.11729/syltlx20230152
引用本文: 胡锐锋. 基于标度律的壁湍流运动分解与雷诺数效应[J]. 实验流体力学, 2024, 38(4): 1-15 doi: 10.11729/syltlx20230152
HU R F. Scaling-law-based decomposition and Reynolds-number effects of wall-bounded turbulent motions[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(4): 1-15 doi: 10.11729/syltlx20230152
Citation: HU R F. Scaling-law-based decomposition and Reynolds-number effects of wall-bounded turbulent motions[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(4): 1-15 doi: 10.11729/syltlx20230152

基于标度律的壁湍流运动分解与雷诺数效应

doi: 10.11729/syltlx20230152
基金项目: 国家自然科学基金项目(11972175,92052202,11490553,11502185)
详细信息
    作者简介:

    胡锐锋:(1984—),男,甘肃天水人,研究员,博士生导师。研究方向:湍流理论与模拟,颗粒两相流,环境流体力学。E-mail:hurf@lzu.edu.cn

    通讯作者:

    E-mail:hurf@lzu.edu.cn

  • 中图分类号: O357.5+2

Scaling-law-based decomposition and Reynolds-number effects of wall-bounded turbulent motions

  • 摘要: 壁湍流广泛存在于自然界和工程中,对其深入研究和理解有助于发展新的计算模型和调控手段。湍流具有多尺度性,壁面带来的各向异性使得壁湍流多尺度运动更为复杂。本文探讨和总结了基于标度律的壁湍流运动分解方法:内–外分解方法和外区分解方法,其中内–外分解方法基于内区湍流运动的雷诺数无关性,而外区分解方法基于Townsend的附着涡标度律;讨论了分解后壁湍流运动统计特性的雷诺数效应,给出了内区湍流运动达到雷诺数无关和出现外区湍流运动的2个临界雷诺数。
  • 图  1  槽道湍流的平均速度和湍动能(实线:平均速度;虚线:湍动能)

    Figure  1.  Profiles of mean streamwise flow velocity and turbulence kinetic energy of turbulent channel flows (solid lines: mean flow velocity; dashed lines: turbulence kinetic energy)

    图  2  槽道湍流流向脉动速度预乘能谱图

    Figure  2.  Premultiplied spectra of streamwise velocity fluctuation

    图  3  根据原始内–外分解模型得到的内区湍流运动脉动强度

    Figure  3.  Intensities of inner turbulent motions by the original inner-outer decomposition model

    图  4  根据原始内–外分解模型得到的叠加和调制函数

    Figure  4.  The superimposition and modulation functions by the original inner-outer decomposition model

    图  5  根据改进内–外分解模型得到的内区湍流运动脉动强度

    Figure  5.  The intensities of inner turbulent motions by the improved inner-outer decomposition model

    图  6  根据改进内–外分解模型得到的叠加和调制函数

    Figure  6.  The superimposition and modulation functions by the improved inner-outer decomposition model

    图  7  Townsend附着涡示意图

    Figure  7.  Sketch of Townsend’s wall-attached eddies

    图  8  槽道和边界层湍流中的附着涡流向速度脉动

    Figure  8.  The streamwise velocity fluctuations of wall-attached eddies in channels and turbulent boundary layers

    图  9  不同层级附着涡的尺寸及数密度

    Figure  9.  The size and population density of wall-attached eddies of different hierarchies

    图  10  低雷诺数内区湍流运动脉动强度

    Figure  10.  The intensities of inner motions at low Reynolds numbers

    图  11  壁面切应力脉动内–外分量的雷诺数效应

    Figure  11.  The Reynolds number effects of inner and outer components of wall-shear stress fluctuations

  • [1] MARUSIC I, MCKEON B J, MONKEWITZ P A, et al. Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues[J]. Physics of Fluids, 2010, 22(6): 065103. doi: 10.1063/1.3453711
    [2] SMITS A J, MCKEON B J, MARUSIC I. High–Reynolds number wall turbulence[J]. Annual Review of Fluid Mechanics, 2011, 43: 353–375. doi: 10.1146/annurev-fluid-122109-160753
    [3] JIMÉNEZ J. Coherent structures in wall-bounded turbulence[J]. Journal of Fluid Mechanics, 2018, 842: P1. doi: 10.1017/jfm.2018.144
    [4] LEE C B, JIANG X Y. Flow structures in transitional and turbulent boundary layers[J]. Physics of Fluids, 2019, 31(11): 111301. doi: 10.1063/1.5121810
    [5] 郑晓静, 王国华. 高雷诺数壁湍流的研究进展及挑战[J]. 力学进展, 2020, 50: 202001. doi: 10.6052/1000-0992-19-009

    ZHENG X J, WANG G H. Progresses and challenges of high Reynolds number wall-bounded turbulence[J]. Advances in Mechanics, 2020, 50: 202001. doi: 10.6052/1000-0992-19-009
    [6] LIU H Y, ZHENG X J. Large-scale structures of wall-bounded turbulence in single- and two-phase flows: advancing understanding of the atmospheric surface layer during sandstorms[J]. Flow, 2021, 1: E5. doi: 10.1017/flo.2021.6
    [7] SMITS A J. Batchelor Prize Lecture: measurements in wall-bounded turbulence[J]. Journal of Fluid Mechanics, 2022, 940: A1. doi: 10.1017/jfm.2022.83
    [8] CANTWELL B J. Organized motion in turbulent flow[J]. Annual Review of Fluid Mechanics, 1981, 13: 457–515. doi: 10.1146/annurev.fl.13.010181.002325
    [9] HUSSAIN A K M F. Coherent structures—reality and myth[J]. The Physics of Fluids, 1983, 26(10): 2816–2850. doi: 10.1063/1.864048
    [10] ROBINSON S. Coherent motions in the turbulent boundary layer[J]. Annual Review of Fluid Mechanics, 1991, 23: 601–639. doi: 10.1146/annurev.fluid.23.1.601
    [11] ADRIAN R J. Hairpin vortex organization in wall turbulence[J]. Physics of Fluids, 2007, 19(4): 041301. doi: 10.1063/1.2717527
    [12] 许春晓. 壁湍流相干结构和减阻控制机理[J]. 力学进展, 2015, 45: 201504. doi: 10.6052/1000-0992-15-006

    XU C X. Coherent structures and drag-reduction mechanism in wall turbulence[J]. Advances in Mechanics, 2015, 45: 201504. doi: 10.6052/1000-0992-15-006
    [13] KLINE S J, REYNOLDS W C, SCHRAUB F A, et al. The structure of turbulent boundary layers[J]. Journal of Fluid Mechanics, 1967, 30(4): 741–773. doi: 10.1017/s0022112067001740
    [14] SMITH C R, METZLER S P. The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer[J]. Journal of Fluid Mechanics, 1983, 129: 27–54. doi: 10.1017/s0022112083000634
    [15] JEONG J, HUSSAIN F, SCHOPPA W, et al. Coherent structures near the wall in a turbulent channel flow[J]. Journal of Fluid Mechanics, 1997, 332: 185–214. doi: 10.1017/s0022112096003965
    [16] HEAD M R, BANDYOPADHYAY P. New aspects of turbulent boundary-layer structure[J]. Journal of Fluid Mechanics, 1981, 107(11): 297–338. doi: 10.1017/s0022112081001791
    [17] ELSINGA G E, POELMA C, SCHRÖDER A, et al. Tracking of vortices in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2012, 697: 273–295. doi: 10.1017/jfm.2012.60
    [18] WANG C Y, GAO Q, WANG J J, et al. Experimental study on dominant vortex structures in near-wall region of turbulent boundary layer based on tomographic particle image velocimetry[J]. Journal of Fluid Mechanics, 2019, 874: 426–454. doi: 10.1017/jfm.2019.412
    [19] ZHOU J, ADRIAN R J, BALACHANDAR S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387(1): 353–396. doi: 10.1017/S002211209900467X
    [20] ADRIAN R J, MEINHART C D, TOMKINS C D. Vortex organization in the outer region of the turbulent boundary layer[J]. Journal of Fluid Mechanics, 422: 1-54. doi: 10.1017/S0022112000001580
    [21] CHRISTENSEN K T, ADRIAN R J. Statistical evidence of hairpin vortex packets in wall turbulence[J]. Journal of Fluid Mechanics, 2001, 431: 433–443. doi: 10.1017/s0022112001003512
    [22] DENNIS D J C, NICKELS T B. Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets[J]. Journal of Fluid Mechanics, 2011, 673: 180–217. doi: 10.1017/s0022112010006324
    [23] JODAI Y, ELSINGA G E. Experimental observation of hairpin auto-generation events in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2016, 795: 611–633. doi: 10.1017/jfm.2016.153
    [24] DENG S C, PAN C, WANG J J, et al. On the spatial organization of hairpin packets in a turbulent boundary layer at low-to-moderate Reynolds number[J]. Journal of Fluid Mechanics, 2018, 844: 635–668. doi: 10.1017/jfm.2018.160
    [25] MEINHART C D, ADRIAN R J. On the existence of uniform momentum zones in a turbulent boundary layer[J]. Physics of Fluids, 1995, 7(4): 694–696. doi: 10.1063/1.868594
    [26] DE SILVA C M, HUTCHINS N, MARUSIC I. Uniform momentum zones in turbulent boundary layers[J]. Journal of Fluid Mechanics, 2016, 786: 309–331. doi: 10.1017/jfm.2015.672
    [27] WANG Y F, HUANG Y J, ZHANG J H, et al. Uniform momentum zones on the smooth and superhydrophobic surfaces in a turbulent boundary layer[J]. Acta Mechanica Sinica, 2023, 39(8): 322467. doi: 10.1007/s10409-023-22467-x
    [28] WU X H, MOIN P, WALLACE J M, et al. Transitional-turbulent spots and turbulent-turbulent spots in boundary layers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): E5292–E5299. doi: 10.1073/pnas.1704671114
    [29] ZHAO Y M, XIONG S Y, YANG Y, et al. Sinuous distortion of vortex surfaces in the lateral growth of turbulent spots[J]. Physical Review Fluids, 2018, 3(7): 074701. doi: 10.1103/physrevfluids.3.074701
    [30] WU X H. New insights into turbulent spots[J]. Annual Review of Fluid Mechanics, 2023, 55: 45–75. doi: 10.1146/annurev-fluid-120720-021813
    [31] LEE C B, WU J Z. Transition in wall-bounded flows[J]. Applied Mechanics Reviews, 2008, 61(3): 030802. doi: 10.1115/1.2909605
    [32] KIM K C, ADRIAN R J. Very large-scale motion in the outer layer[J]. Physics of Fluids, 1999, 11(2): 417–422. doi: 10.1063/1.869889
    [33] GUALA M, HOMMEMA S E, ADRIAN R J. Large-scale and very-large-scale motions in turbulent pipe flow[J]. Journal of Fluid Mechanics, 2006, 554: 521–542. doi: 10.1017/s0022112006008871
    [34] BALAKUMAR B J, ADRIAN R J. Large- and very-large-scale motions in channel and boundary-layer flows[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 2007, 365(1852): 665-681. DOI: 10.1098/rsta.2006.1940.
    [35] HUTCHINS N, MARUSIC I. Evidence of very long meandering features in the logarithmic region of turbulent boundary layers[J]. Journal of Fluid Mechanics, 2007, 579: 1–28. doi: 10.1017/s0022112006003946
    [36] WANG G H, ZHENG X J. Very large scale motions in the atmospheric surface layer: a field investigation[J]. Journal of Fluid Mechanics, 2016, 802: 464–489. doi: 10.1017/jfm.2016.439
    [37] CAMERON S M, NIKORA V I, STEWART M T. Very-large-scale motions in rough-bed open-channel flow[J]. Journal of Fluid Mechanics, 2017, 814: 416–429. doi: 10.1017/jfm.2017.24
    [38] HAMILTON J M, KIM J, WALEFFE F. Regeneration mechanisms of near-wall turbulence structures[J]. Journal of Fluid Mechanics, 1995, 287: 317–348. doi: 10.1017/s0022112095000978
    [39] WALEFFE F. On a self-sustaining process in shear flows[J]. Physics of Fluids, 1997, 9(4): 883–900. doi: 10.1063/1.869185
    [40] JIMÉNEZ J, PINELLI A. The autonomous cycle of near-wall turbulence[J]. Journal of Fluid Mechanics, 1999, 389: 335–359. doi: 10.1017/s0022112099005066
    [41] KAWAHARA G, KIDA S. Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst[J]. Journal of Fluid Mechanics, 2001, 449: 291–300. doi: 10.1017/s0022112001006243
    [42] PANTON R L. Overview of the self-sustaining mechanisms of wall turbulence[J]. Progress in Aerospace Sciences, 2001, 37(4): 341–383. doi: 10.1016/s0376-0421(01)00009-4
    [43] SCHOPPA W, HUSSAIN F. Coherent structure generation in near-wall turbulence[J]. Journal of Fluid Mechanics, 2002, 453: 57–108. doi: 10.1017/s002211200100667x
    [44] HWANG Y, COSSU C. Self-sustained process at large scales in turbulent channel flow[J]. Physical Review Letters, 2010, 105(4): 044505. doi: 10.1103/PhysRevLett.105.044505
    [45] FARRELL B F, IOANNOU P J. Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow[J]. Journal of Fluid Mechanics, 2012, 708: 149–196. doi: 10.1017/jfm.2012.300
    [46] COSSU C, HWANG Y. Self-sustaining processes at all scales in wall-bounded turbulent shear flows[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 2017, 375(2089): 20160088. doi: 10.1098/rsta.2016.0088
    [47] BAE H J, LOZANO-DURÁN A, MCKEON B J. Nonlinear mechanism of the self-sustaining process in the buffer and logarithmic layer of wall-bounded flows[J]. Journal of Fluid Mechanics, 2021, 914: A3. doi: 10.1017/jfm.2020.857
    [48] WU X H, MOIN P. Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer[J]. Journal of Fluid Mechanics, 2009, 630: 5–41. doi: 10.1017/S0022112009006624
    [49] LEE J H, SUNG H J. Very-large-scale motions in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2011, 673: 80–120. doi: 10.1017/s002211201000621x
    [50] BALTZER J R, ADRIAN R J, WU X H. Structural organization of large and very large scales in turbulent pipe flow simulation[J]. Journal of Fluid Mechanics, 2013, 720: 236–279. doi: 10.1017/jfm.2012.642
    [51] LEE J, LEE J H, CHOI J Il, et al. Spatial organization of large- and very-large-scale motions in a turbulent channel flow[J]. Journal of Fluid Mechanics, 2014, 749: 818–840. doi: 10.1017/jfm.2014.249
    [52] SCHLATTER P, LI Q, ÖRLÜ R, et al. On the near-wall vortical structures at moderate Reynolds numbers[J]. European Journal of Mechanics - B/Fluids, 2014, 48: 75–93. doi: 10.1016/j.euromechflu.2014.04.011
    [53] EITEL-AMOR G, ÖRLÜ R, SCHLATTER P, et al. Hairpin vortices in turbulent boundary layers[J]. Physics of Fluids, 2015, 27(2): 025108. doi: 10.1063/1.4907783
    [54] WANG Y S, HUANG W X, XU C X. On hairpin vortex generation from near-wall streamwise vortices[J]. Acta Mechanica Sinica, 2015, 31(2): 139–152. doi: 10.1007/s10409-015-0415-8
    [55] CHEN X, CHUNG Y M, WAN M P. Uniform-momentum zones in a turbulent pipe flow[J]. Journal of Fluid Mechanics, 2020, 884: A25. doi: 10.1017/jfm.2019.947
    [56] CHEN X, CHUNG Y M, WAN M P. The uniform-momentum zones and internal shear layers in turbulent pipe flows at Reynolds numbers up to Reτ = 1000[J]. International Journal of Heat and Fluid Flow, 2021, 90: 108817. doi: 10.1016/j.ijheatfluidflow.2021.108817
    [57] ZHANG W Y, HUANG W X, XU C X. Very large-scale motions in turbulent flows over streamwise traveling wavy boundaries[J]. Physical Review Fluids, 2019, 4(5): 054601. doi: 10.1103/physrevfluids.4.054601
    [58] MOTOORI Y, GOTO S. Hairpin vortices in the largest scale of turbulent boundary layers[J]. International Journal of Heat and Fluid Flow, 2020, 86: 108658. doi: 10.1016/j.ijheatfluidflow.2020.108658
    [59] RICHARDSON L F. The supply of energy from and to atmospheric eddies[J]. Proceedings of the Royal Society of London. Series A, 97: 354-373. doi: 10.1098/rspa.1920.0039.
    [60] KOLMOGOROV A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[J]. Akademiia Nauk SSSR Doklady, 1941, 30: 301–305.
    [61] OBUKHOV A. On the distribution of energy in the spectrum of turbulent flow[J]. Akademiia Nauk SSSR Doklady, 1941, 32: 22.
    [62] SHE Z S. Universal law of cascade of turbulent fluctuations[J]. Progress of Theoretical Physics Supplement, 1998, 130: 87–102. doi: 10.1143/PTPS.130.87
    [63] GOTO S. A physical mechanism of the energy cascade in homogeneous isotropic turbulence[J]. Journal of Fluid Mechanics, 2008, 605: 355–366. doi: 10.1017/s0022112008001511
    [64] XIAO Z, WAN M, CHEN S, et al. Physical mechanism of the inverse energy cascade of two-dimensional turbulence: a numerical investigation[J]. Journal of Fluid Mechanics, 2009, 619: 1–44. doi: 10.1017/s0022112008004266
    [65] WANG J C, YANG Y T, SHI Y P, et al. Cascade of kinetic energy in three-dimensional compressible turbulence[J]. Physical Review Letters, 2013, 110(21): 214505. doi: 10.1103/PhysRevLett.110.214505
    [66] CARDESA J I, VELA-MARTÍN A, JIMÉNEZ J. The turbulent cascade in five dimensions[J]. Science, 2017, 357(6353): 782–784. doi: 10.1126/science.aan7933
    [67] ALEXAKIS A, BIFERALE L. Cascades and transitions in turbulent flows[J]. Physics Reports, 2018, 767-769: 1–101. doi: 10.1016/j.physrep.2018.08.001
    [68] XIE J H, BÜHLER O. Exact third-order structure functions for two-dimensional turbulence[J]. Journal of Fluid Mechanics, 2018, 851: 672–686. doi: 10.1017/jfm.2018.528
    [69] YAO J, HUSSAIN F. A physical model of turbulence cascade via vortex reconnection sequence and avalanche[J]. Journal of Fluid Mechanics, 2019, 883: A51. doi: 10.1017/jfm.2019.905
    [70] CARBONE M, BRAGG A D. Is vortex stretching the main cause of the turbulent energy cascade?[J]. Journal of Fluid Mechanics, 2020, 883: R2. doi: 10.1017/jfm.2019.923
    [71] JOHNSON P L. Energy transfer from large to small scales in turbulence by multiscale nonlinear strain and vorticity interactions[J]. Physical Review Letters, 2020, 124(10): 104501. doi: 10.1103/PhysRevLett.124.104501
    [72] YAN Z, LI X L, YU C P, et al. Dual channels of helicity cascade in turbulent flows[J]. Journal of Fluid Mechanics, 2020, 894: R2. doi: 10.1017/jfm.2020.289
    [73] JOHNSON P L. On the role of vorticity stretching and strain self-amplification in the turbulence energy cascade[J]. Journal of Fluid Mechanics, 2021, 922: A3. doi: 10.1017/jfm.2021.490
    [74] BENZI R, TOSCHI F. Lectures on turbulence[J]. Physics Reports, 2023, 1021: 1–106. doi: 10.1016/j.physrep.2023.05.001
    [75] DOMARADZKI J A, LIU W, HÄRTEL C, et al. Energy transfer in numerically simulated wall-bounded turbulent flows[J]. Physics of Fluids, 1994, 6(4): 1583–1599. doi: 10.1063/1.868272
    [76] MARATI N, CASCIOLA C M, PIVA R. Energy cascade and spatial fluxes in wall turbulence[J]. Journal of Fluid Mechanics, 2004, 521: 191–215. doi: 10.1017/s0022112004001818
    [77] BOLOTNOV I A, LAHEY R T Jr, DREW D A, et al. Spectral analysis of turbulence based on the DNS of a channel flow[J]. Computers & Fluids, 2010, 39(4): 640–655. doi: 10.1016/j.compfluid.2009.11.001
    [78] HONG J R, KATZ J, MENEVEAU C, et al. Coherent structures and associated subgrid-scale energy transfer in a rough-wall turbulent channel flow[J]. Journal of Fluid Mechanics, 2012, 712: 92–128. doi: 10.1017/jfm.2012.403
    [79] MIZUNO Y. Spectra of energy transport in turbulent channel flows for moderate Reynolds numbers[J]. Journal of Fluid Mechanics, 2016, 805: 171–187. doi: 10.1017/jfm.2016.564
    [80] CHO M, HWANG Y, CHOI H. Scale interactions and spectral energy transfer in turbulent channel flow[J]. Journal of Fluid Mechanics, 2018, 854: 474–504. doi: 10.1017/jfm.2018.643
    [81] LEE M, MOSER R D. Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number[J]. Journal of Fluid Mechanics, 2019, 860: 886–938. doi: 10.1017/jfm.2018.903
    [82] DONG S W, HUANG Y X, YUAN X X, et al. The coherent structure of the kinetic energy transfer in shear turbulence[J]. Journal of Fluid Mechanics, 2020, 892: A22. doi: 10.1017/jfm.2020.195
    [83] WANG W K, PAN C, WANG J J. Energy transfer structures associated with large-scale motions in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2021, 906: A14. doi: 10.1017/jfm.2020.777
    [84] WANG H P, YANG Z X, WU T, et al. Coherent structures associated with interscale energy transfer in turbulent channel flows[J]. Physical Review Fluids, 2021, 6(10): 104601. doi: 10.1103/physrevfluids.6.104601
    [85] MOTOORI Y, GOTO S. Hierarchy of coherent structures and real-space energy transfer in turbulent channel flow[J]. Journal of Fluid Mechanics, 2021, 911: A27. doi: 10.1017/jfm.2020.1025
    [86] PIOMELLI U, CABOT W H, MOIN P, et al. Subgrid-scale backscatter in turbulent and transitional flows[J]. Physics of Fluids A:Fluid Dynamics, 1991, 3(7): 1766–1771. doi: 10.1063/1.857956
    [87] HÄRTEL C, KLEISER L, UNGER F, et al. Subgrid-scale energy transfer in the near-wall region of turbulent flows[J]. Physics of Fluids, 1994, 6(9): 3130–3143. doi: 10.1063/1.868137
    [88] CIMARELLI A, DE ANGELIS E, JIMÉNEZ J, et al. Cascades and wall-normal fluxes in turbulent channel flows[J]. Journal of Fluid Mechanics, 2016, 796: 417–436. doi: 10.1017/jfm.2016.275
    [89] KAWATA T, ALFREDSSON P H. Inverse interscale transport of the Reynolds shear stress in plane Couette turbulence[J]. Physical Review Letters, 2018, 120(24): 244501. doi: 10.1103/PhysRevLett.120.244501
    [90] HAMBA F. Inverse energy cascade and vortical structure in the near-wall region of turbulent channel flow[J]. Physical Review Fluids, 2019, 4(11): 114609. doi: 10.1103/physrevfluids.4.114609
    [91] HUTCHINS N, MARUSIC I. Large-scale influences in near-wall turbulence[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 2007, 365(1852): 647-664. DOI: 10.1098/rsta.2006.1942.
    [92] MATHIS R, HUTCHINS N, MARUSIC I. Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers[J]. Journal of Fluid Mechanics, 2009, 628: 311–337. doi: 10.1017/s0022112009006946
    [93] SCHLATTER P, ÖRLÜ R. Quantifying the interaction between large and small scales in wall-bounded turbulent flows: a note of caution[J]. Physics of Fluids, 2010, 22(5): 1–4. doi: 10.1063/1.3432488
    [94] GUALA M, METZGER M, MCKEON B J. Interactions within the turbulent boundary layer at high Reynolds number[J]. Journal of Fluid Mechanics, 2011, 666: 573–604. doi: 10.1017/s0022112010004544
    [95] MATHIS R, MARUSIC I, HUTCHINS N, et al. The relationship between the velocity skewness and the amplitude modulation of the small scale by the large scale in turbulent boundary layers[J]. Physics of Fluids, 2011, 23(12): 121702. doi: 10.1063/1.3671738
    [96] GANAPATHISUBRAMANI B, HUTCHINS N, MONTY J P, et al. Amplitude and frequency modulation in wall turbulence[J]. Journal of Fluid Mechanics, 2012, 712: 61–91. doi: 10.1017/jfm.2012.398
    [97] JACOBI I, MCKEON B J. Phase relationships between large and small scales in the turbulent boundary layer[J]. Experiments in Fluids, 2013, 54(3): 1481. doi: 10.1007/s00348-013-1481-y
    [98] AGOSTINI L, LESCHZINER M A. On the influence of outer large-scale structures on near-wall turbulence in channel flow[J]. Physics of Fluids, 2014, 26(7): 075107. doi: 10.1063/1.4890745
    [99] DUVVURI S, MCKEON B J. Triadic scale interactions in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2015, 767: R4. doi: 10.1017/jfm.2015.79
    [100] ANDERSON W. Amplitude modulation of streamwise velocity fluctuations in the roughness sublayer: evidence from large-eddy simulations[J]. Journal of Fluid Mechanics, 2016, 789: 567–588. doi: 10.1017/jfm.2015.744
    [101] ZHANG C, CHERNYSHENKO S I. Quasisteady quasihomogeneous description of the scale interactions in near-wall turbulence[J]. Physical Review Fluids, 2016, 1: 014401. doi: 10.1103/physrevfluids.1.014401
    [102] PATHIKONDA G, CHRISTENSEN K T. Inner–outer interactions in a turbulent boundary layer overlying complex roughness[J]. Physical Review Fluids, 2017, 2(4): 044603. doi: 10.1103/physrevfluids.2.044603
    [103] SALESKY S T, ANDERSON W. Buoyancy effects on large-scale motions in convective atmospheric boundary layers: implications for modulation of near-wall processes[J]. Journal of Fluid Mechanics, 2018, 856: 135–168. doi: 10.1017/jfm.2018.711
    [104] HOWLAND M F, YANG X I A. Dependence of small-scale energetics on large scales in turbulent flows[J]. Journal of Fluid Mechanics, 2018, 852: 641–662. doi: 10.1017/jfm.2018.554
    [105] YAO Y C, HUANG W X, XU C X. Amplitude modulation and extreme events in turbulent channel flow[J]. Acta Mechanica Sinica, 2018, 34(1): 1–9. doi: 10.1007/s10409-017-0687-2
    [106] DOGAN E, ÖRLÜ R, GATTI D, et al. Quantification of amplitude modulation in wall-bounded turbulence[J]. Fluid Dynamics Research, 2019, 51(1): 011408. doi: 10.1088/1873-7005/aaca81
    [107] LIU H Y, WANG G H, ZHENG X J. Amplitude modulation between multi-scale turbulent motions in high-Reynolds-number atmospheric surface layers[J]. Journal of Fluid Mechanics, 2019, 861: 585–607. doi: 10.1017/jfm.2018.906
    [108] TANG Z Q, JIANG N, ZHENG X B, et al. Local dynamic perturbation effects on amplitude modulation in turbulent boundary layer flow based on triple decomposition[J]. Physics of Fluids, 2019, 31(2): 025120. doi: 10.1063/1.5083224
    [109] IACOBELLO G, RIDOLFI L, SCARSOGLIO S. Large-to-small scale frequency modulation analysis in wall-bounded turbulence via visibility networks[J]. Journal of Fluid Mechanics, 2021, 918: A13. doi: 10.1017/jfm.2021.279
    [110] TANG Z Q, MA X Y, JIANG N, et al. Local dynamic perturbation effects on the scale interactions in wall turbulence[J]. Journal of Turbulence, 2021, 22(3): 208–230. doi: 10.1080/14685248.2020.1864388
    [111] TANG Z Q, CHEN L T, FAN Z Y, et al. Cross-term events of scale-decomposed skewness factor in turbulent boundary layer at moderate Reynolds number[J]. Physics of Fluids, 2021, 33(5): 055124. doi: 10.1063/5.0050048
    [112] WANG H P, GAO Q. A study of inner-outer interactions in turbulent channel flows by interactive POD[J]. Theoretical and Applied Mechanics Letters, 2021, 11(1): 100222. doi: 10.1016/j.taml.2021.100222
    [113] ZHENG X B, BELLANI G, MASCOTELLI L, et al. Inter-scale interaction in pipe flows at high Reynolds numbers[J]. Experimental Thermal and Fluid Science, 2022, 131: 110529. doi: 10.1016/j.expthermflusci.2021.110529
    [114] LIU H Y, HE X B, ZHENG X J. Amplitude modulation in particle-laden atmospheric surface layers[J]. Journal of Fluid Mechanics, 2023, 957: A14. doi: 10.1017/jfm.2022.1092
    [115] ANDREOLLI A, GATTI D, VINUESA R, et al. Separating large-scale superposition and modulation in turbulent channels[J]. Journal of Fluid Mechanics, 2023, 958: A37. doi: 10.1017/jfm.2023.103
    [116] LI M G, BAARS W J, MARUSIC I, et al. Quantifying inner-outer interactions in noncanonical wall-bounded flows[J]. Physical Review Fluids, 2023, 8(8): 084602. doi: 10.1103/physrevfluids.8.084602
    [117] DESHPANDE R, CHANDRAN D, SMITS A J, et al. On the relationship between manipulated inter-scale phase and energy-efficient turbulent drag reduction[J]. Journal of Fluid Mechanics, 2023, 972: A12. doi: 10.1017/jfm.2023.715
    [118] POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press, 2000.
    [119] LEE M, MOSER R D. Direct numerical simulation of turbulent channel flow up to Re τ ≈ 5200[J]. Journal of Fluid Mechanics, 2015, 774: 395–415. doi: 10.1017/jfm.2015.268
    [120] WANG H P, WANG S Z, HE G W. The spanwise spectra in wall-bounded turbulence[J]. Acta Mechanica Sinica, 2018, 34(3): 452–461. doi: 10.1007/s10409-017-0731-2
    [121] JIMÉNEZ J, MOIN P. The minimal flow unit in near-wall turbulence[J]. Journal of Fluid Mechanics, 1991, 225: 213–240. doi: 10.1017/s0022112091002033
    [122] MARUSIC I, BAARS W J, HUTCHINS N. Scaling of the streamwise turbulence intensity in the context of inner-outer interactions in wall turbulence[J]. Physical Review Fluids, 2017, 2(10): 100502. doi: 10.1103/PhysRevFluids.2.100502
    [123] CHEN X, SREENIVASAN K R. Reynolds number scaling of the peak turbulence intensity in wall flows[J]. Journal of Fluid Mechanics, 2021, 908: R3. doi: 10.1017/jfm.2020.991
    [124] MONTY J P, HUTCHINS N, NG H C H, et al. A comparison of turbulent pipe, channel and boundary layer flows[J]. Journal of Fluid Mechanics, 2009, 632: 431–442. doi: 10.1017/s0022112009007423
    [125] MARUSIC I, MATHIS R, HUTCHINS N. Predictive model for wall-bounded turbulent flow[J]. Science, 2010, 329(5988): 193–196. doi: 10.1126/science.1188765
    [126] MATHIS R, HUTCHINS N, MARUSIC I. A predictive inner-outer model for streamwise turbulence statistics in wall-bounded flows[J]. Journal of Fluid Mechanics, 2011, 681: 537–566. doi: 10.1017/jfm.2011.216
    [127] BAARS W J, HUTCHINS N, MARUSIC I. Spectral stochastic estimation of high-Reynolds-number wall-bounded turbulence for a refined inner-outer interaction model[J]. Physical Review Fluids, 2016, 1(5): 054406. doi: 10.1103/physrevfluids.1.054406
    [128] HOYAS S, JIMÉNEZ J. Scaling of the velocity fluctuations in turbulent channels up to Re τ = 2003[J]. Physics of Fluids, 2006, 18(1): 011702. doi: 10.1063/1.2162185
    [129] WANG L M, HU R F, ZHENG X J. A scaling improved inner–outer decomposition of near-wall turbulent motions[J]. Physics of Fluids, 2021, 33(4): 045120. doi: 10.1063/5.0046502
    [130] TOWNSEND A A. The structure of turbulent shear flow[M]. 2rd ed. Cambridge, New York: Cambridge University Press: 1976.
    [131] PERRY A E, CHONG M S. On the mechanism of wall turbulence[J]. Journal of Fluid Mechanics, 1982, 119: 173–217. doi: 10.1017/s0022112082001311
    [132] MARUSIC I, MONTY J P. Attached eddy model of wall turbulence[J]. Annual Review of Fluid Mechanics, 2019, 51: 49–74. doi: 10.1146/annurev-fluid-010518-040427
    [133] HU R F, DONG S W, VINUESA R. General attached eddies: scaling laws and cascade self-similarity[J]. Physical Review Fluids, 2023, 8(4): 044603. doi: 10.1103/physrevfluids.8.044603
    [134] JIMÉNEZ J, HOYAS S. Turbulent fluctuations above the buffer layer of wall-bounded flows[J]. Journal of Fluid Mechanics, 2008, 611: 215–236. doi: 10.1017/s0022112008002747
    [135] HULTMARK M, VALLIKIVI M, BAILEY S C C, et al. Turbulent pipe flow at extreme Reynolds numbers[J]. Physical Review Letters, 2012, 108(9): 094501. doi: 10.1103/PhysRevLett.108.094501
    [136] MARUSIC I, MONTY J P, HULTMARK M, et al. On the logarithmic region in wall turbulence[J]. Journal of Fluid Mechanics, 2013, 716: R3. doi: 10.1017/jfm.2012.511
    [137] MENEVEAU C, MARUSIC I. Generalized logarithmic law for high-order moments in turbulent boundary layers[J]. Journal of Fluid Mechanics, 2013, 719: R1. doi: 10.1017/jfm.2013.61
    [138] YANG X I A, MARUSIC I, MENEVEAU C. Moment generating functions and scaling laws in the inertial layer of turbulent wall-bounded flows[J]. Journal of Fluid Mechanics, 2016, 791: R2. doi: 10.1017/jfm.2016.82
    [139] MEHREZ A, PHILIP J, YAMAMOTO Y, et al. Pressure and spanwise velocity fluctuations in turbulent channel flows: Logarithmic behavior of moments and coherent structures[J]. Physical Review Fluids, 2019, 4(4): 044601. doi: 10.1103/physrevfluids.4.044601
    [140] BAARS W J, MARUSIC I. Data-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 2. Integrated energy and A1[J]. Journal of Fluid Mechanics, 2020, 882: A26. doi: 10.1017/jfm.2019.835
    [141] HU R F, YANG X I A, ZHENG X J. Wall-attached and wall-detached eddies in wall-bounded turbulent flows[J]. Journal of Fluid Mechanics, 2020, 885: A30. doi: 10.1017/jfm.2019.980
    [142] DESHPANDE R, MONTY J P, MARUSIC I. Active and inactive components of the streamwise velocity in wall-bounded turbulence[J]. Journal of Fluid Mechanics, 2021, 914: A5. doi: 10.1017/jfm.2020.884
    [143] WANG L W, PAN C, WANG J J, et al. Statistical signatures of u component wall-attached eddies in proper orthogonal decomposition modes of a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2022, 944: A26. doi: 10.1017/jfm.2022.495
    [144] YU M, XU C X, CHEN J Q, et al. Spectral decomposition of wall-attached/detached eddies in compressible and incompressible turbulent channel flows[J]. Physical Review Fluids, 2022, 7(5): 054607. doi: 10.1103/physrevfluids.7.054607
    [145] PUCCIONI M, CALAF M, PARDYJAK E R, et al. Identification of the energy contributions associated with wall-attached eddies and very-large-scale motions in the near-neutral atmospheric surface layer through wind LiDAR measurements[J]. Journal of Fluid Mechanics, 2023, 955: A39. doi: 10.1017/jfm.2022.1080
    [146] PERRY A E, MARUŠIĆ I. A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis[J]. Journal of Fluid Mechanics, 1995, 298: 361–388. doi: 10.1017/s0022112095003351
    [147] WOODCOCK J D, MARUSIC I. The statistical behaviour of attached eddies[J]. Physics of Fluids, 2015, 27(1): 015104. doi: 10.1063/1.4905301
    [148] MARUSIC I, HEUER W D C. Reynolds number invariance of the structure inclination angle in wall turbulence[J]. Physical Review Letters, 2007, 99(11): 114504. doi: 10.1103/PhysRevLett.99.114504
    [149] LIU H Y, BO T L, LIANG Y R. The variation of large-scale structure inclination angles in high Reynolds number atmospheric surface layers[J]. Physics of Fluids, 2017, 29(3): 035104. doi: 10.1063/1.4978803
    [150] DESHPANDE R, MONTY J P, MARUSIC I. Streamwise inclination angle of large wall-attached structures in turbulent boundary layers[J]. Journal of Fluid Mechanics, 2019, 877: R4. doi: 10.1017/jfm.2019.663
    [151] HUANG H J. Refining the connection between the logarithmic velocity profile and energy spectrum based on eddy’s inclination angle[J]. Physical Review Fluids, 2019, 4(11): 114702. doi: 10.1103/physrevfluids.4.114702
    [152] CHENG C, SHYY W, FU L. Streamwise inclination angle of wall-attached eddies in turbulent channel flows[J]. Journal of Fluid Mechanics, 2022, 946: A49. doi: 10.1017/jfm.2022.657
    [153] HU R F, ZHENG X J, DONG S W. Extracting discrete hierarchies of Townsend’s wall-attached eddies[J]. Physics of Fluids, 2022, 34(6): 061701. doi: 10.1063/5.0090712
    [154] 董思卫, 程诚, 陈坚强, 等. 基于聚类连通法的湍流拟序结构研究进展[J]. 力学进展, 2021, 51(4): 792–830. doi: 10.6052/1000-0992-20-032

    DONG S W, CHENG C, CHEN J Q, et al. A review of the study on coherent structures in turbulence by the clustering method[J]. Advances in Mechanics, 2021, 51(4): 792–830. doi: 10.6052/1000-0992-20-032
    [155] WANG L M, HU R F. Inner-outer decomposition of wall shear stress fluctuations in turbulent channels[J]. Theoretical and Applied Mechanics Letters, 2022, 12(2): 100337. doi: 10.1016/j.taml.2022.100337
    [156] CHEN X, SREENIVASAN K R. Law of bounded dissipation and its consequences in turbulent wall flows[J]. Journal of Fluid Mechanics, 2022, 933: A20. doi: 10.1017/jfm.2021.1052
    [157] HU R F, ZHENG X J. Energy contributions by inner and outer motions in turbulent channel flows[J]. Physical Review Fluids, 2018, 3(8): 084607. doi: 10.1103/physrevfluids.3.084607
  • 加载中
图(11)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  7
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-06
  • 修回日期:  2023-12-12
  • 录用日期:  2024-01-04
  • 网络出版日期:  2024-04-15

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日