留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑温度影响的PSP动态校准方法及特性研究

刘强 李强 魏春华 尹熹伟 蒋海林 梁磊

刘强, 李强, 魏春华, 等. 考虑温度影响的PSP动态校准方法及特性研究[J]. 实验流体力学, doi: 10.11729/syltlx20230161
引用本文: 刘强, 李强, 魏春华, 等. 考虑温度影响的PSP动态校准方法及特性研究[J]. 实验流体力学, doi: 10.11729/syltlx20230161
LIU Q, LI Q, WEI C H, et al. The dynamic calibration method of PSP and its characteristics research considering the influence of temperature[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230161
Citation: LIU Q, LI Q, WEI C H, et al. The dynamic calibration method of PSP and its characteristics research considering the influence of temperature[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230161

考虑温度影响的PSP动态校准方法及特性研究

doi: 10.11729/syltlx20230161
基金项目: 国家重点研发计划项目(2020YFA0405700);国家自然科学基金项目(12202476)
详细信息
    作者简介:

    刘强:(1997—),男,四川泸州人,硕士研究生。研究方向:快响应压敏漆静、动态校准技术。E-mail:liuzeal@foxmail.com

    通讯作者:

    E-mail:skywork@163.com

  • 中图分类号: V211.7

The dynamic calibration method of PSP and its characteristics research considering the influence of temperature

  • 摘要: 快响应压敏涂料( Pressure-Sensitive Paint, PSP)的动态特性及温度对其影响规律是决定快响应PSP是否适用于非定常流场的关键依据。本文提出了快响应PSP动态校准方法,采用能够调节温度和频率的动态校准系统建立可控校准驻波场,系统开展了温度对所研制的聚合物陶瓷压敏涂料(Polymer Ceramic Pressure-Sensitive Paint, PC-PSP)压力灵敏度和频响特性的影响研究。动态校准比静态校准能够更为准确地反映快响应涂料的特性。频率变化对PC-PSP压力灵敏度有显著影响;温度对PC-PSP压力灵敏度的影响不明显,但在测量中不可忽视PSP的温度敏感度。同一温度下,随着频率增大,增益减小,相位滞后现象逐渐增强;不同温度下,随着温度升高,截止频率增大,相位滞后现象逐渐减弱。所测试的PC-PSP在20 ℃、0.5 kHz下的动态压力灵敏度为0.59%/kPa,在20 ℃、3.0 kHz下动态压力灵敏度为0.51%/kPa,截止频率为4.8 kHz,性能稳定,满足低速风洞非定常试验的工程要求。
  • 图  1  动态校准系统示意图

    Figure  1.  Scheme of dynamic calibration system

    图  2  驻波管实物图

    Figure  2.  Photo of standing wave tube

    图  3  动态校准系统实物图

    Figure  3.  Photo of dynamic calibration system

    图  4  PC-PSP样片激发前后图像

    Figure  4.  Image of PC-PSP sample before and after excitation

    图  5  PC-PSP动态校准实验现场

    Figure  5.  PC-PSP dynamic calibration experimental site

    图  6  f = 5 kHz时驻波管内压力波动分布图

    Figure  6.  Pressure fluctuation distribution chart of standing wave tube at f = 5 kHz

    图  7  信号取值位置示意图

    Figure  7.  Schematic diagram of signal value location

    图  8  压力传感器原始信号及带通滤波结果

    Figure  8.  Original signal and filtering result of pressure sensor

    图  9  压力传感器原始信号频谱图

    Figure  9.  Spectrogram of pressure sensor's original signal

    图  10  校准系统共振谱图

    Figure  10.  Resonance spectrum of calibration system

    图  11  PC-PSP样片在不同温度下的动态校准曲线

    Figure  11.  Dynamic temperature calibration curves of PC-PSP samples at different temperatures

    图  12  PC-PSP样片在10 ℃下的测量结果

    Figure  12.  Measurement results of PC-PSP sample at 10 ℃

    图  13  PC-PSP样片在不同温度下的测量结果

    Figure  13.  Measurement results of PC-PSP samples at different temperatures

    图  14  不同温度下PC-PSP样片的频响特性

    Figure  14.  Frequency response characteristics of PC-PSP samples at different temperatures

    表  1  校准系统压力–频率表

    Table  1.   Pressure-frequency table of calibration system

    工作频率/kHz 压力/kPa 工作频率/kHz 压力/kPa
    0.5 3.647 15 0.242
    1.5 5.198 20 0.191
    5 2.926 30 0.137
    10 1.450 40 0.078
    下载: 导出CSV

    表  2  PC-PSP样片变温压力灵敏度表

    Table  2.   Pressure sensitivity table of PC-PSP sample with changing temperature

    温度/℃Sp-0.5/(%·kPa−1Sp-3/(%·kPa−11−Sp-3/Sp-0.5
    100.570.4422.8%
    200.590.5113.6%
    300.570.5012.3%
    400.580.5210.3%
    下载: 导出CSV
  • [1] PETERSON J I, FITZGERALD R V. New technique of surface flow visualization based on oxygen quenching of fluorescence[J]. Review of Scientific Instruments, 1980, 51(5):670–671. doi: 10.1063/1.1136277
    [2] 战培国. 动态压敏漆技术研究综述[J]. 飞航导弹, 2015(7): 55–59. doi: 10.16338/j.issn.1009-1319.2015.07.12
    [3] GREGORY J W, SAKAUE H, LIU T S, et al. Fast pressure-sensitive paint for flow and acoustic diagnostics[J]. Annual Review of Fluid Mechanics, 2014, 46: 303–330. doi: 10.1146/annurev-fluid-010313-141304
    [4] DONG Z, LIANG L, ZHANG W G, et al. Simultaneous pressure and deformation field measurement on helicopter rotor blades using a grid-pattern pressure-sensitive paint system[J]. Measurement, 2020, 152: 107359. doi: 10.1016/j.measurement.2019.107359
    [5] 魏春华, 仝帆, 廖先辉, 等. 基于快响应压敏漆的螺旋桨表面压力测量技术研究[J]. 气动研究与实验, 2022, 34(2): 53–60. doi: 10.12050/are20220206

    WEI C H, TONG F, LIAO X H, et al. Research on surface pressure measurement technology of propeller based on fast-sounding Pressure-Sensitive Paint[J]. Aerodynamic Research & Experiment, 2022, 34(2): 53–60. doi: 10.12050/are20220206
    [6] NAKAKITA K. Scanning unsteady PSP technique for high-frequency and small-pressure fluctuation in low-speed[C]//Proc of the 27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2010. doi: 10.2514/6.2010-4920
    [7] CRAFTON J, FORLINES A, PALLUCONI S, et al. Investigation of transverse jet injections in a supersonic crossflow using fast-responding pressure-sensitive paint[J]. Experiments in Fluids, 2015, 56(2): 1–15. doi: 10.1007/s00348-014-1877-3
    [8] GORDEYEV S, DE LUCCA N, JUMPER E J, et al. Comparison of unsteady pressure fields on turrets with different surface features using pressure-sensitive paint[J]. Experiments in Fluids, 2014, 55(1): 1661. doi: 10.1007/s00348-013-1661-9
    [9] DAVIS T, EDSTRAND A, ALVI F, et al. Investigation of impinging jet resonant modes using unsteady pressure-sensitive paint measurements[J]. Experiments in Fluids, 2015, 56(5): 101. doi: 10.1007/s00348-015-1976-9
    [10] PASTUHOFF M, TILLMARK N, ALFREDSSON P H. Dynamic calibration of polymer/ceramic pressure sensitive paint using a shock tube[C]//Proc of the 7th International Conference on Flow Dynamics. 2010: 132-133.
    [11] KAMEDA M. Effect of luminescence lifetime on the frequency response of fast-response pressure-sensitive paints[J]. Transactions of The Japan Society of Mechanical Engineers, Part B, 2012, 78(795): 1942–1950. doi: 10.1299/kikaib.78.1942
    [12] GREGORY J W, ASAI K, KAMEDA M, et al. A review of pressure-sensitive paint for high-speed and unsteady aerodynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2008, 222(2): 249-290. doi: 10.1243/09544100jaero243
    [13] PANDEY A, GREGORY J W. Frequency-response characteris-tics of polymer/ceramic pressure-sensitive paint[J]. AIAAJournal, 2016, 54(1): 174–185. doi: 10.2514/1.J054166
    [14] SUGIMOTO T, KITASHIMA S, NUMATA D, et al. Characterization of frequency response of pressure-sensitive paints[C]//Proc of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2012. doi: 10.2514/6.2012-1185
    [15] CASPER K M, WAGNER J L, BERESH S J, et al. Unsteady pressure sensitive paint measurements of resonance properties in complex cavities[C]//Proc of the 46th AIAA Fluid Dynamics Conference. 2016. doi: 10.2514/6.2016-3315
    [16] McMULLEN R M, HUYNH D P, GREGORY J, et al. Dynamic calibrations for fast-response porous polymer/ceramic pressure-sensitive paint[C]//Proc of the AIAA Ground Testing Conference. 2013. doi: 10.2514/6.2013-3123
    [17] PANDEY A, GREGORY J. Dynamic response characteris-tics of polymer/ceramic pressure-sensitive paint[C]//Proc of the 53rd AIAA Aerospace Sciences Meeting. 2015. doi: 10.2514/6.2015-0021
    [18] 高丽敏, 姜衡, 葛宁, 等. 正弦波型高频动态压力光学校准系统及其应用[J]. 航空学报, 2020, 41(10): 123667. doi: 10.7527/S1000-6893.2020.23667

    GAO L M, JIANG H, GE N, et al. A high frequency dynamic pressure optical calibration system based on sinusoidal wave and its application[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123667. doi: 10.7527/S1000-6893.2020.23667
    [19] 高丽敏, 欧阳波, 姜衡, 等. 快速响应压力敏感涂料截止频率实验研究[J]. 航空学报, 2023, 44(11): 38–46. doi: 10.7527/S1000-6893.2022.27556

    GAO L M, OUYANG B, JIANG H, et al. Experimental study on cut-off frequency of fast response pressure sensitive paint[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(11): 38–46. doi: 10.7527/S1000-6893.2022.27556
    [20] SUGIMOTO T, SUGIOKA Y, NUMATA D, et al. Characterization of frequency response of pressure-sensitive paints[J]. AIAA Journal, 2017, 55(4): 1460–1464. doi: 10.2514/1.j054985
    [21] LIU T S, SULLIVAN J P, ASAI K, et al. Pressure and temperature sensitive paints[M]. Berlin: Springer, 2005: 30-31.
    [22] PENG D, GU F, ZHONG Z, et al. Thermal stability improvement of sprayable fast-responding pressure-sensitive paint for measurement above 100℃[J]. Chinese Journal of Aeronautics, 2021, 34(1): 320–326. doi: 10.1016/j.cja.2020.09.040
    [23] PENG D, LIU Y Z. Fast pressure-sensitive paint for understanding complex flows: from regular to harsh environments[J]. Experiments in Fluids, 2019, 61(1): 8. doi: 10.1007/s00348-019-2839-6
    [24] JIAO L R, PENG D, LIU Y Z. Dynamic response of polymer ceramic pressure-sensitive paint: improved model considering thickness effect[J]. AIAA Journal, 2018, 56(7): 2903–2906. doi: 10.2514/1.J056778
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-20
  • 修回日期:  2023-12-26
  • 录用日期:  2024-02-04
  • 网络出版日期:  2024-04-17

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日