Wang Ganglin, Zheng Sui. Research on mechanism of transonic area rule in near field[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 1-6. doi: 10.11729/syltlx20160024
Citation: Wang Ganglin, Zheng Sui. Research on mechanism of transonic area rule in near field[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 1-6. doi: 10.11729/syltlx20160024

Research on mechanism of transonic area rule in near field

doi: 10.11729/syltlx20160024
  • Received Date: 2016-02-01
  • Rev Recd Date: 2016-04-25
  • Publish Date: 2016-08-25
  • The qualitative descriptions of the area rule bring some confusion and problems to the actual aircraft design work. The linear perturbation assumption in conventional theoretical derivations does not suit the development for more and more refined aerodynamic design in the future. For AGARD-B standard model which has typical shape characteristics of high speed aircraft, we combined the CFD with optimization methods to probe the body modification form for optimal drag reduction. From that, a better drag reduction result and more detailed modification principles of drag reduction are obtained compared to those obtained from the traditional area rule method. Based on the present principles, through the analysis of drag force felt by each component and comparison of the drag forces on the body surface before and after modification, it is found that the essence of area rule drag reduction is the advantageous interference produced among the adjacent components of the aircraft configuration. Finally, the drag reduction effects of fuselage shrinkage cross-sectional shape are studied and verified. The comparison among different lift coefficient conditions validates that the drag reduction effect of area rule is the same under various lift coefficients and angles of attack condition.
  • loading
  • [1]
    Cole J D, Cook L P. Transonic aerodynamics[M]. Amsterdam: Elsevier Science Publishers, 2012.
    [2]
    Chattot J, et al. Theoretical and applied aerodynamics[M]. New York: Springer Science+Business Media, 2015.
    [3]
    Gu Y Q, Fan T X, Mou J G, et al. Drag reduction technology of jet-a review[J]. International Journal of Engineering Research in Africa, 2015, 17(7): 30-42. http://cn.bing.com/academic/profile?id=2243434047&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    Jameson A, Ou K. 50 years of transonic aircraft design[J]. Progress in Aerospace Sciences, 2011, 47(5): 308-318. doi: 10.1016/j.paerosci.2011.01.001
    [5]
    David A. Computational sensitivity analysis for the aerodynamic design of supersonic and hypersonic air vehicles[R]. ADA622380, 2015. http://cn.bing.com/academic/profile?id=2195423499&encoded=0&v=paper_preview&mkt=zh-cn
    [6]
    Michael G. Computational analysis and characterization of RC-135 external aerodynamics[R]. ADA561659, 2012.
    [7]
    Forbes A, Patel A, Cone C, et al. Drag prediction for supersonic hydrogen-fueled airliners[R]. AIAA-2011-3968, 2011.
    [8]
    Palaniappan K, Jameson A. Bodies having minimum pressure drag in supersonic flow: Investigating nonlinear effects[J]. Journal of Aircraft, 2010, 47(4): 1451-1454. doi: 10.2514/1.C031000
    [9]
    Dehpanah P, Nejat A. The aerodynamic design evaluation of a blended-wing-body configuration[J]. Aerospace Science and Technology, 2015, 43(6): 96-110. http://cn.bing.com/academic/profile?id=2037238279&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    Lyu Z, Joaquim R, Martins R. Aerodynamic design optimization studies of a blended-wing-body aircraft[J]. Journal of Aircraft, 2014, 51(5): 1604-1617. doi: 10.2514/1.C032491
    [11]
    Roysdon P, Khalid M. Lateral-directional stability investigation of a blended-wing-body[R]. AIAA-2010-9617, 2010.
    [12]
    Utsumi Y, Obayashi S. Design of supersonic biplane aircraft concerning sonic boom minimization[R]. AIAA-2010-4962, 2010. http://cn.bing.com/academic/profile?id=2171865953&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    Ku Y C, Rho J H, et al. Optimal cross-sectional area distribution of a high-speed train nose to minimize the tunnel micro-pressure wave[J]. Structural and Multidisciplinary Optimization, 2010, 42(6): 965-976. doi: 10.1007/s00158-010-0550-6
    [14]
    Alyanak E. Modeling for conceptual design: an aeroelastic approach[R]. AIAA-2012-1425, 2012.
    [15]
    Christopher L O, Choi S. Design of optimum equivalent-area target for high-fidelity low-boom aircraft design[R]. AIAA-2015-2580, 2015.
    [16]
    Khalid A, Kumar P. Aerodynamic optimization of box wing-a case study[J]. International Journal of Aviation, Aeronautics, and Aerospace, 2014, 1(4): 1-46. http://cn.bing.com/academic/profile?id=127845652&encoded=0&v=paper_preview&mkt=zh-cn
    [17]
    Berger C, Carmona K, et al. Supersonic bi-directional flying wing configuration with low sonic boom and high aerodynamic efficiency[R]. AIAA-2011-3663, 2011. http://www.researchgate.net/publication/268004294_Supersonic_Bi-Directional_Flying_Wing_Configuration_with_Low_Sonic_Boom_and_High_Aerodynamic_Efficiency
    [18]
    Zha G, Im H, Espinal D. Toward zero sonic-boom and high efficiency supersonic flight, part i: a novel concept of supersonic bi-directional flying wing[R]. AIAA-2010-1013, 2010.
    [19]
    Wintzer M, Kroo I. Optimization and adjoint-based CFD for the conceptual design of low sonic boom aircraft[R]. AIAA-2012-963, 2012.
    [20]
    Waddington M, McDonald R. Development of an interactive wave drag capability for the open VSP parametric geometry tool[R]. AIAA-2015-2548, 2015.
    [21]
    Guan X H. Supersonic wing-body two-level wave drag optimization using extended far-field composite-element methodology[J]. AIAA Journal, 2014, 52(5): 981-990. doi: 10.2514/1.J052305
    [22]
    Feng X Q, Li Z K, et al. Research of low boom and low drag supersonic aircraft design[J]. Chinese Journal of Aeronautics, 2014, 27(3): 531-541. doi: 10.1016/j.cja.2014.04.004
    [23]
    Berci M, Vigevano L. Sonic boom propagation with a non linear geometrical acoustic model[R]. AIAA-2011-2856, 2011.
    [24]
    Berci1 M, Igevano L. Sonic boom propagation revisited: a nonlinear geometrical acoustic model[J]. Aerospace Science and Technology, 2012, 23(1): 280-295. doi: 10.1016/j.ast.2011.08.003
    [25]
    Haas A, Kroo I. A multi-shock inverse design method for low-boom supersonic aircraft[R]. AIAA-2010-843, 2010.
    [26]
    Jung T, Starkey R, et al. Design methods to create frozen sonic booms via lobe balancing using aircraft components[R]. AIAA-2011-2857, 2011.
    [27]
    Damljanovic D, Vitic A, et al. Testing of AGARD-B calibration model in the T-38 transonic wind tunnel[J]. Scientific Technical Review, 2006, 56(2): 52-62.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(1)

    Article Metrics

    Article views (163) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return