He Xuzhao, Qin Si, Zhou Kai, et al. Experimental study of the influence of the specific heat and pressure ratios on the hypersonic vehicle's nozzle plume[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 13-19. doi: 10.11729/syltlx20160084
Citation: He Xuzhao, Qin Si, Zhou Kai, et al. Experimental study of the influence of the specific heat and pressure ratios on the hypersonic vehicle's nozzle plume[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 13-19. doi: 10.11729/syltlx20160084

Experimental study of the influence of the specific heat and pressure ratios on the hypersonic vehicle's nozzle plume

doi: 10.11729/syltlx20160084
  • Received Date: 2016-05-29
  • Rev Recd Date: 2016-07-04
  • Publish Date: 2017-02-25
  • The experimental studies have been carried out to explore the influences of the Specific Heat Ratio (SHR) on the air-breathing hypersonic vehicle's nozzle plume at CARDC's 0.5m hypersonic wind tunnel. The SHR of the plume at the scramjet exit is simulated by CF4+Air with SHR=1.25. The Laval nozzle is used in the experimental model to generate the supersonic nozzle plume and the flow field generated by the wind tunnel is used to simulate the model's external flow field. The differences of the pressure distributions and flow field structures are compared between the pure air and mixture gas plumes. Results show that in the mixture gas plume, the pressure distributions are higher than air plume in the core and interaction regions. The SHR is one of the key parameters for the study of air-breathing hypersonic vehicle's plume.
  • loading
  • [1]
    Ebranhimi H B, Lankford D W. Numerical study of phenomena affecting the predictionof scramjet combustor and nozzle performance[R]. AIAA-93-0024, 1993.
    [2]
    Spaid F W, Keener E R. Experimental results for a hypersonic nozzle/afterbody flow field[R]. AIAA-92-3915, 1992.
    [3]
    Ruffin S M, Venkatapathy E. Single expansion ramp nozzle simulation[R]. AIAA-92-0387, 1992.
    [4]
    Tatum K, Monta W, witte D, et al. Analysis of generic scramjet external nozzle flowfields employing simulant gases[R]. AIAA-90-5242, 1990.
    [5]
    Watnabe S. Scramjet nozzle experiment with hpersonic external flow[J]. Journal of Propulsion and Power, 1993, 9 (4): 521-528. doi: 10.2514/3.23654
    [6]
    Mitani T, Ueda S. Validation studies of scramjet nozzle performance[J]. Journal of Propulsion and Power, 1993, 9 (5): 725-730. doi: 10.2514/3.23682
    [7]
    Hiraiwa T, Tomioka S, Udea S, et al. Performance variation of scramjet nozzle at various nozzle pressure ratios[J]. Journal of Propulsion and Power, 1995, 11 (3): 403-408. doi: 10.2514/3.23858
    [8]
    Tohro Mitani, Koichiro Tani, Shigeru Sato, et al. Experimental validation of scramjet nozzle performance[R]. AIAA-92-3290, 1992.
    [9]
    Hirschen C, Gruhn P, Gülhan A. Influence of heat capacity ratio on the interaction between the external flow and nozzle flow of a scramjet[R]. AIAA-2006-8095, 2006.
    [10]
    Hirschen C, Gülhan A. Infrared thermography and pitot pressure measurements of a scramjet nozzle flowfield[J]. Journal of Propulsion and Power, 2009, 25 (5): 303-311.
    [11]
    Hirschen C, Gülhan A, Beck W H, et al. Measurement of flow properties and thrust on scramjet nozzle using pressure-sensitive paint[J]. Journal of Propulsion and Power, 2009, 25 (2): 267-280. doi: 10.2514/1.37957
    [12]
    Hirschen C. Experimental study of the interaction between internal and external flows of a scramjet nozzle using various diagnostic techniques[R]. AIAA-2007-5088, 2007.
    [13]
    Hirschen C, Gülhan A, Beck W H, et al. Experimental study of a scramjet nozzle flow using the pressure-sensitive-paint method[J]. Journal of Propulsion and Power, 2008, 24 (4): 662-672. doi: 10.2514/1.34626
    [14]
    贺旭照, 秦思, 曾学军, 等. 模拟飞行条件下的吸气式高超声速飞行器后体尾喷流干扰问题实验方案研究[J]. 推进技术, 2014, 35 (10):1310-1316. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201410003.htm

    He X Z, Qin S, Zeng X J, et al. Experiment scheme research on afterbody nozzle plume interferenece of air-breathing hypersonic vehicle fly condition[J]. Journal of Propulsion Technology, 2014, 35 (10): 1310-1316. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201410003.htm
    [15]
    恽起麟. 风洞实验[M]. 北京: 国防工业出版社,2000.
    [16]
    Edwards T A. The effect of exhaust plume/afterbody interaction on installed scramjet performance[R]. NASA-TM-101033, 1988.
    [17]
    贺旭照, 赵慧勇, 乐嘉陵. 考虑可压缩与热传导的壁面函数边界条件及其应用[J]. 空气动力学报, 2006, 24 (4): 450-453. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200604009.htm

    He X Z,Zhao H Y,Le J L. Application of wall function boundary condition considering heat transfer and compressibility[J]. Acta Aerodynamic Sinica, 2006, 24 (4): 450-453. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200604009.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (140) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return