Li Zhonghua, Li Zhihui, Jiang Xinyu, et al. Numerical simulation of nano-particle following features for NPLS measurement technology used in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 73-79. doi: 10.11729/syltlx20160094
Citation: Li Zhonghua, Li Zhihui, Jiang Xinyu, et al. Numerical simulation of nano-particle following features for NPLS measurement technology used in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 73-79. doi: 10.11729/syltlx20160094

Numerical simulation of nano-particle following features for NPLS measurement technology used in hypersonic wind tunnel

doi: 10.11729/syltlx20160094
  • Received Date: 2016-06-08
  • Rev Recd Date: 2016-10-18
  • Publish Date: 2017-02-25
  • A numerical simulation approach is presented to simulate the rarefied two phase flow by applying two-way coupling technique in DSMC method. The interaction between the rarefied gas and solid particles is dealt with in a decoupled way to compute the momentum and energy exchange between phases. A numerical study of nano-particle following features for NPLS measurement technique used in the hypersonic wind tunnel is carried out by employing the DSMC method suited to simulate the rarefied two phase flow. The 50nm TiO2 particles in various rarefaction two phase flow cases are simulated. The results show that nano-particle following features are satisfactory in the low rarefaction flow. As the degree of the flow rarefaction rises, the following features decrease deteriorate the difference between particle and gas distributions increase, and therefore the flow structure can't be obtained from NPLS correctly.
  • loading
  • [1]
    Dolling D S. 50 years of shock wave/boundary layer interaction-what next?[R]. AIAA-2000-2596, 2000.
    [2]
    Humble R A, Scarano F, Oudheusden B W. Experimental study of an incident shock wave/turbulent boundary layer interaction using PIV[R]. AIAA-2006-3361, 2006.
    [3]
    Adrian R J. Multi-Point optical measurement of simultaneous vectors in unsteady flow-a review[J]. Int J Heat&Fluid Flow, 1986, 127: 127-145. https://www.researchgate.net/publication/222748121_Multi-Point_Optical_Measurements_of_Simultaneous_Vectors_in_Unsteady_Flow-a_Review
    [4]
    Adrian R J. Particle imagine techniques for experimental fluid mechanics[J]. Ann Rev Fluid Mech, 1991, 23: 261-304. doi: 10.1146/annurev.fl.23.010191.001401
    [5]
    Palma P C, Danely P M, Houwing A F P, et al. PLIF thermometry of a free-pistion shock-tunnel nozzle flow[R]. AIAA-1998-2703, 1998.
    [6]
    Danehy P M, O'Byrne S. Measurement of NO density in a free-piston shock tunnel using PLIF[R]. AIAA-99-0772, 1999.
    [7]
    易仕和, 何霖, 赵玉新, 等. 基于NPLS 技术的超声速混合层流动控制实验研究[J]. 中国科学 (G辑), 2009, 39 (11): 1640-1645. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200911013.htm

    Yi S H, He L. Zhao Y X, et al. A flow control study of a supersonic mixing layer via NPLS[J]. Sci China (Ser G), 2009, 39 (11): 1640-1645. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200911013.htm
    [8]
    易仕和, 何霖, 田立丰, 等. 纳米示踪平面激光散射技术在激波复杂流场测量中的应用[J]. 力学进展, 2013, 42 (2): 197-205. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201202007.htm

    Yi S H, He L, Tian L F, et al. The application of nano-tracer planar laser scattering in shock wave field measurement[J]. Advances in Mechanics, 2012, 42 (2):197-205. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201202007.htm
    [9]
    赵玉新, 易仕和, 田立丰, 等. 基于纳米粒子的超声速流动成像[J]. 中国科学 (E辑), 2009, 39 (12): 1911-1918. http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200912003.htm

    Zhao Y X, Yi S H, Tian L F, et al. Supersonic flow imaging via nanoparticles[J]. Sci China (Ser E), 2009, 39 (12): 1911-1918. http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200912003.htm
    [10]
    田立丰, 易仕和, 赵玉新. 超声速弹头凹型光学头罩流动显示研究[J]. 实验流体力学, 2009, 23 (1): 15-17. http://www.syltlx.com/CN/abstract/abstract9716.shtml

    Tian L F, Yi S H, Zhao Y X. Flow visualization of supersonic flow around a concave optical bow cap model of warhead[J]. Journal of Experiments in Fluid Mechanics, 2009, 23 (1):15-17. http://www.syltlx.com/CN/abstract/abstract9716.shtml
    [11]
    李明, 易仕和, 祝智伟, 等. 激光散射技术在高超声速激波与边界层干扰试验中的应用[J]. 红外与激光工程, 2013, 42 (s1): 79-83. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2013S1017.htm

    Li M, Yi S H, Zhu Z W, et al. Application of laser scattering technique to hypersonic shock-wave and boundary layer interactions[J]. Infrared and Laser Engineering, 2013, 42 (s1): 79-83. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2013S1017.htm
    [12]
    Urban W D, Mungal M G. Planar velocity measurements in compressible mixing layers[R]. AIAA-97-0757, 1997.
    [13]
    Bird G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford: Clarendon Press, 1994.
    [14]
    Gallis M A, Rader D J, Torczynski J R. DSMC simulations of the thermophoretic force on a spherical macroscopic particle[R]. AIAA-2001-2890, 2001.
    [15]
    Burt J M, Boyd I D. Development of a two-way coupled model for two phase rarefied flows[R]. AIAA-2004-1351, 2004.
    [16]
    Burt J M, Boyd I D. Monte Carlo simulation of a rarefied multiphase plume flow[R]. AIAA-2005-964, 2005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (196) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return