Liu Fushui, Hua Yang, Wu Han, et al. Research progress on soot measurement by laser induced incandescence[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 1-12. doi: 10.11729/syltlx20160104
Citation: Liu Fushui, Hua Yang, Wu Han, et al. Research progress on soot measurement by laser induced incandescence[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 1-12. doi: 10.11729/syltlx20160104

Research progress on soot measurement by laser induced incandescence

doi: 10.11729/syltlx20160104
  • Received Date: 2016-06-27
  • Rev Recd Date: 2016-08-05
  • Publish Date: 2017-02-25
  • Laser induced incandescence is a non-contact optical diagnosis method. With this method, we can obtain the two-dimensional spatial distribution of instantaneous soot within the thin layer of incoming sheet laser. This method has become an important measurement technology of soot due to its high spatial and temporal resolution. This paper first introduces the development of LⅡ technology and basic theory. Then the technical methods of LⅡ and research progress at home and abroad are summarized detailedly from three aspects, that numerical simulation, qualitative and quantitative measurement. The LⅡ mathematical model mainly includes Melton model, Liu model and Michelsen model. These models can be used to predict the change rule of LⅡ signal and also lay a foundation for the test of soot particle size. To realize quantitative measurement, the calibration of LⅡ signal is necessary. This is also one of the difficulties in LⅡ measurement. There are mainly three methods for calibration, that are sampling technique, light extinction method (LEM) and 2-color laser induced incandescence (2C-LⅡ). The sampling technique is less used because it will disturb the combustion process and mix impurities. The LⅡ-LEM needs two laser systems and uses the measuring result of LEM to calibrate the LⅡ signal, so its operation is complicated. Nevertheless, 2C-LⅡ does not need other measurement technology and can realize online real-time calibration. Since this method is relatively simple, it develops rapidly and has achieved many significant results. Naturally, LⅡ technology still needs improvement, such as optimizing the incident laser wavelength and energy, controlling the uniformity of laser sheet, perfecting the LⅡ mathematical model, and extending the application in complex environment. Through summarizing the research achievements of LⅡ technology, this paper aims to emphasize the research status and the importance of this method in understanding the soot formation and oxidation mechanism, and providing some references for its future development.
  • loading
  • [1]
    何旭, 马骁, 王建昕. 光学诊断在柴油机缸内碳烟测试中的应用[J]. 车用发动机, 2007 (3): 8-13. http://www.cnki.com.cn/Article/CJFDTOTAL-CYFD200703001.htm

    He X, Ma X, Wang J X. Optical diagnostics for soot measurement in the cylinder of diesel engine[J]. Vehicle Engine, 2007 (3): 8-13. http://www.cnki.com.cn/Article/CJFDTOTAL-CYFD200703001.htm
    [2]
    岳宗宇. 基于激光诱导炽光法的碳烟测量方法研究[D]. 天津: 天津大学, 2012.

    Yue Z Y. Investigation on measurement of soot by laser-induced incandescence (LⅡ)[D]. Tianjin: Tianjin University, 2012.
    [3]
    Weeks R W, Duley W W. Aerosol-particle sizes from light emission during excitation by TEA CO2 laser pulses[J]. Journal of Applied Physics, 1974, 45 (10): 4661-4662. doi: 10.1063/1.1663111
    [4]
    Eckbreth A C. Effects of laser-modulated particle incandescence on Raman scattering diagnostics[J]. Appl Phys, 1977, 48 (11): 4473-4479. doi: 10.1063/1.323458
    [5]
    Dec J E, Loye A O, Siebers D L. Soot distribution in a D. I. diesel engine using 2-D laser-induced incandescence imaging[C]. SAE 910224, 1991.
    [6]
    Melton A L. Soot diagnostics based on laser heating[J]. Appl Optics, 1984, 23 (13): 2201-2208. doi: 10.1364/AO.23.002201
    [7]
    Dasch C J. New soot diagnostics in flames based on laser vaporization of soot[C]. Proceedings of the Twentieth Symposium (International) on Combustion, 1984: 1231-1237.
    [8]
    Hofeldt D L. Real-time soot concentration measurement technique for engine exhaust streams[C]. SAE 930079, 1993.
    [9]
    Liu F, Stagg B J, Snelling D R, et al. Effects of primary soot particle size distribution on the temperature of soot particles heated by a nanosecond pulsed laser in an atmospheric laminar diffusion flame[J]. International Journal of Heat and Mass Transfer, 2006, 46: 777-788. https://www.researchgate.net/publication/222933724_Effects_of_primary_soot_particle_size_distribution_on_the_temperature_of_soot_particles_heated_by_a_nanosecond_pulsed_laser_in_an_atmospheric_laminar_diffusion_flame
    [10]
    Liu F, Yang M, Hill F A, et al. Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LⅡ[J]. Applied Physics B Lasers and Optics, 2006, 83: 383-395. doi: 10.1007/s00340-006-2196-z
    [11]
    Bladh H, Bengtsson P, Characteristics of laser-induced incandescence from soot in studies of a time-dependent heat-and mass-transfer model[J]. Applied Physics B, 2004, 78: 241-248. doi: 10.1007/s00340-003-1362-9
    [12]
    Bladh H, Bengtsson P, J Delhay Y, et al. Experimental and theoretical comparison of spatially resolved laser-induced incandescence (LⅡ) signals of soot in backward and right-angle configuration[J]. Applied Physics B, 2006, 83: 423-433. doi: 10.1007/s00340-006-2197-y
    [13]
    Bladh H, Johnsson J, Bengtsson P. On the dependence of the laser- induced incandescence (LⅡ) signal on soot volume fraction for variations in particle size[J]. Applied Physics B, 2008, 90: 109-125. doi: 10.1007/s00340-007-2826-0
    [14]
    Michelsen H A. Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles[J]. Journal of Chemical Physics, 2003, 118 (15): 7012-7045. doi: 10.1063/1.1559483
    [15]
    Fengshan L, Smallwood G J. Relationship between soot volume fraction and LⅡ signal in AC-LⅡ: effect of primary soot particle diameter polydispersity[J]. Applied Physics B, 2013, 112: 307-319. doi: 10.1007/s00340-012-5330-0
    [16]
    Bejaoui S, Batut S, Therssen E, et al. Measurements and modeling of laser-induced incandescence of soot at different heights in a flat premixed flame[J]. Applied Physics B, 2015, 118: 449-469. https://www.researchgate.net/publication/273328308_Measurements_and_modeling_of_laser-induced_incandescence_of_soot_at_different_heights_in_a_flat_premixed_flame
    [17]
    王飞, 严建华, 马增益, 等. 运用激光诱导发光法测量碳黑粒子浓度的模拟计算[J]. 中国电机工程学报, 2006, 26 (7): 6-11. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200607001.htm

    Wang F, Yan J H, Ma Z Y, et al. Simulation on soot concentration measurement with laser induced incandescence[J]. Proceedings of the CSEE, 2006, 26 (7): 6-11. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200607001.htm
    [18]
    何旭, 李红梅, 郑亮, 等. 激光诱导炽光技术测试过程的数值模拟[J]. 北京理工大学学报, 2012, 32 (10): 1048-1053. http://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201210012.htm

    He X, Li H M, Zheng L, et al. Numerical simulation of the process of laser induced incandescence[J]. Transactions of Beijing Institute of Technology, 2012, 32 (10): 1048-1053. http://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201210012.htm
    [19]
    Dec J E, Espey C. Ignition and early soot formation in a DI diesel engine using multiple 2-D imaging diagnostics[C]. SAE Paper 950456, 1995.
    [20]
    Dec J E. A conceptual model of DI diesel combustion based on laser-sheet imaging[C]. SAE Paper 970873, 1997.
    [21]
    Dec J E, Kelly-Zion P L. The Effects of injection timing and diluent addition on late-combustion soot burnout in a DI diesel engine based on simultaneous 2-D imaging of OH and soot[C]. SAE Paper 2000-01-0238, 2000.
    [22]
    田波, 顾晨, 田志松, 等. 预混合乙烯火焰生成物相对浓度的激光诊断[J]. 现代车用动力, 2012 (2): 20-24. http://www.cnki.com.cn/Article/CJFDTOTAL-XDCY201202004.htm

    Tian B, Gu C, Tian Z S, et al. Laser diagnosis on concentration of soot particles and their precursors in premixed ethylene flames[J]. Modern Vehicle Power, 2012 (2): 20-24. http://www.cnki.com.cn/Article/CJFDTOTAL-XDCY201202004.htm
    [23]
    陈亮, 成晓北, 颜方沁, 等. 基于激光诱导炽光法的柴油喷雾燃烧碳烟生成特性[J]. 内燃机学报, 2012, 30 (5): 730-736. http://www.cnki.com.cn/Article/CJFDTOTAL-NRJX201205001.htm

    Chen L, Cheng X B, Yan F Q, et al. Characteristic of diesel spray combustion and soot formation using laser-induced incandescence[J]. Transaction of CSICE, 2012, 30 (5): 730-736. http://www.cnki.com.cn/Article/CJFDTOTAL-NRJX201205001.htm
    [24]
    陈亮. 柴油燃料燃烧碳烟颗粒生成机理与演变规律的试验和数值研究[D]. 武汉: 华中科技大学, 2013.

    Chen L. Experimental and numerical study on the formation mechanism and evolution of soot particles in diesel fuel combusion process[D]. Wuhan: Huazhong University of Science and Technology, 2013.
    [25]
    Cheng X B, Chen L, Yan F Q, et al. Study of the characteristic of diesel spray combustion and soot formation using laser-induced incandescence (LⅡ)[J]. Journal of the Energy Institute, 2013, 87 (4): 383-392. https://www.researchgate.net/publication/262880104_Study_of_the_characteristic_of_diesel_spray_combustion_and_soot_formation_using_laser-induced_incandescence_LII
    [26]
    Snelling D R, Thomson K A, Smallwood G J, et al. Spectrally resolved measurement of flame radiation to determine soot temperature and concentration[J]. AIAA Journal, 2002, 40 (9): 1789-1795. doi: 10.2514/2.1855
    [27]
    Greis A E, Grünefeld G. Quantitative measurements of the soot distribution in a realistic common rail D. I. diesel engine[C]. 11th Int Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, 2002.
    [28]
    郑亮. 用激光诱导炽光法研究燃烧过程中的碳烟生成特性[D]. 北京: 清华大学, 2014.

    Zheng L. Research on soot formation characteristics in combustion process[D]. Beijing: Tsinghua University, 2014.
    [29]
    Pinson J A, Mitchell D L, Santoro R J. Quantitative, planar soot measurements in a D. I. diesel engine using laser-induced incandescence and light scattering[C]. SAE 932650, 1993.
    [30]
    De Francqueville L, Bruneaux G, Thirouard B. Soot volume fraction measurements in a gasoline direct injection engine by combined laser induced incandescence and laser extinction method[J]. SAE International Journal of Engine, 2010, 3 (1): 163-182. doi: 10.4271/2010-01-0346
    [31]
    Pastor J V, García-Oliver J M, García A, et al. Application of optical diagnostics to the quantification of soot in n-alkane flames under diesel conditions[J]. Combustion and Flame, 2016, 164: 212-223. doi: 10.1016/j.combustflame.2015.11.018
    [32]
    郑亮, 肖国炜, 王建昕, 等. 正庚烷喷雾扩散火焰中碳烟体积分数的定量测量[J]. 内燃机学报, 2014, 32 (1): 14-19. http://www.cnki.com.cn/Article/CJFDTOTAL-NRJX201401003.htm

    Zheng L, Xiao G W, Wang J X, et al. Quantitative measurement of soot concentration in n-heptane fuel jets[J]. Transaction of CSICE, 2014, 32 (1): 14-19. http://www.cnki.com.cn/Article/CJFDTOTAL-NRJX201401003.htm
    [33]
    Zheng L, Ma X, Wang Z, et al. An optical study on liquid-phase penetration, flame lift-off location and soot volume fraction distribution of gasoline-diesel blends in a constant volume vessel[J]. Fuel, 2015, 139: 365-373. doi: 10.1016/j.fuel.2014.09.009
    [34]
    潘振艳. 复杂介质中超细含碳微粒的激光测量实验研究[D]. 杭州: 浙江大学, 2013.

    Pan Z Y. Laser measurement experiment research of the ultrafine carbon particles in the complex medium[D]. Hangzhou: Zhejiang University, 2013.
    [35]
    陈玲红, 吴法, 王勇, 等. 基于时域激光诱导辐射确定湍流火焰烟黑粒径[J]. 浙江大学学报 (工学版), 2010, 44 (11): 2169-2172. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201011024.htm

    Chen L H, Wu F, Wang Y, et al. The size determination of soot particle in turbulent flame based on time-resolved laser-induced emission[J]. Journal of Zhejiang University (Engineering Science), 2010, 44 (11): 2169-2172. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201011024.htm
    [36]
    左磊. 复杂介质中PM2.5的激光测量研究[D]. 杭州: 浙江大学, 2014.

    Zuo L. Laser measurement research of PM2.5 in the complex medium[D]. Hangzhou: Zhejiang University, 2014.
    [37]
    Smallwood G J, Clavel D, Gareau D, et al. Concurrent quantitative laser-induced incandescence and SM PS measurements of EGR effects on particulate emissions from a TDI diesel engine[C]. SAE Paper 2002-01-2715, 2002.
    [38]
    Snelling D R, Smallwood G J, Liu F, et al. A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity[J]. Applied Optics, 2005, 44 (31): 6773-6785. doi: 10.1364/AO.44.006773
    [39]
    Boiarciuc A, Foucher F, Rousselle C M. Soot volume fractions and primary particle size estimate by means of the simultaneous two-color-time-resolved and 2D laser-induced incandescence[J]. Applied Physics B, 2006, 83: 413-421. doi: 10.1007/s00340-006-2236-8
    [40]
    Aronsson U, Chartier C, Andersson Ö, et al. Analysis of EGR effects on the soot distribution in a heavy duty diesel engine using time-resolved laser induced incandescence[J]. SAE International Journal of Engines, 2010, 3 (2): 137-155. doi: 10.4271/2010-01-2104
    [41]
    Maffi S, Iuliis S D, Cignoli F, et al. Investigation on thermal accommodation coefficient and soot absorption function with two-color Tire-LⅡ technique in rich premixed flames[J]. Applied Physics B, 2011, 104: 357-366.
    [42]
    Bladh H, Johnsson J, Olofsson N E, et al. Optical soot characterization using two-color laser-induced incandescence (2C-LⅡ) in the soot growth region of a premixed flat flame[J]. Proceedings of the Combustion Institute, 2011, 33: 641-648. doi: 10.1016/j.proci.2010.06.166
    [43]
    王宇, 姚强, 何旭, 等. 用激光诱导可见光法测量电场影响下火焰碳烟颗粒浓度的分布变化[J]. 中国电机工程学报, 2008, 28 (8): 34-39. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200808007.htm

    Wang Y, Yao Q, He X, et al. Electric field control of soot distribution in flames using laser-induced incandescence[J]. Proceedings of the CSEE, 2008, 28 (8): 34-39. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200808007.htm
    [44]
    何旭, 马骁, 王建昕. 用激光诱导炽光法定量测量火焰中的碳烟浓度[J]. 燃烧科学与技术, 2009, 15 (4): 344-349. http://www.cnki.com.cn/Article/CJFDTOTAL-RSKX200904012.htm

    He X, Ma X, Wang J X. Quantitative soot concentration measurement of flame by laser induced incandescence[J]. Journal of Combustion Science and Technology, 2009, 15 (4): 344-349. http://www.cnki.com.cn/Article/CJFDTOTAL-RSKX200904012.htm
    [45]
    何旭, 马骁, 吴复甲, 等. 基于激光诊断的生物柴油碳烟生成特性研究[J]. 内燃机工程, 2009, 30 (1): 1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-NRJG200901002.htm

    He X, Ma X, Wu F J, et al. Investigation on the soot formation of biodiesel fuel by laser diagnostics[J]. Chinese Internal Combustion Engine Engineering, 2009, 30 (1): 1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-NRJG200901002.htm
    [46]
    张鹏. 生物质含氧燃料对碳烟生成影响的光学诊断研究[D]. 天津: 天津大学, 2014.

    Zhang P. Investigation of the effects of biomass oxygenated additives on soot emission with optical diagnosis[D]. Tianjin: Tianjin University, 2014.
    [47]
    唐青龙, 张鹏, 刘海峰, 等. 利用激光诱导炽光法定量测量柴油机缸内燃烧过程碳烟体积分数[J]. 物理化学学报, 2015, 31 (5): 980-988. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201505023.htm

    Tang Q L, Zhang P, Liu H F, et al. Quantitative measurements of soot volume fractions in diesel engine using laser-induced incandescence method[J]. Acta Physico-Chimica Sinica, 2015, 31 (5): 980-988. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201505023.htm
    [48]
    Will S, Schraml S, Leipertz A. Two-dimensional soot-particle sizing by time-resolved laser induced incandescence[J]. Optics Letters, 1995, 20 (22): 2342-2344. doi: 10.1364/OL.20.002342
    [49]
    Roth P, Filippov A V. In situ ultrafine particle sizing by a combination of pulsed laser heat up and particle thermal emission[J]. Journal of Aerosol Science, 1996, 27 (1): 95-104. doi: 10.1016/0021-8502(95)00531-5
    [50]
    Mews B, Seitzman J M. Soot volume fraction and particle size measurements with laser-induced incandescence[J]. Applied Optics, 1997, 36 (3): 709-717. doi: 10.1364/AO.36.000709
    [51]
    Menkiel B, Donkerbroek A, Uitz R, et al. Measurement of in-cylinder soot particles and their distribution in an optical HSDI diesel engine using time resolved laser induced incandescence (TR-LⅡ)[J]. Combustion and Flame, 2012, 159: 2985-2998. doi: 10.1016/j.combustflame.2012.03.008
    [52]
    Reimann J, Kuhlmann S A, Will S. Improvement in soot concentration measurements by laser-induced incandescence (LⅡ) through a particle size correction[J]. Combustion and Flame, 2008, 153: 650-654. doi: 10.1016/j.combustflame.2008.03.021
    [53]
    Goulay F, Schrader P E, Nemes L, et al. Photochemical interferences for laser-induced incandescence of flame-generated soot[J]. Proceedings of the Combustion Institute, 2009, 32 (1): 963-970. doi: 10.1016/j.proci.2008.05.030
    [54]
    李红梅. 激光诱导炽光技术用于碳烟粒径测试的研究[D]. 北京: 北京理工大学, 2013.

    Li H M. Study on the measurement of soot particle size by laser induced incandescence[D]. Beijing: Beijing Institute of Technology, 2013.
    [55]
    李红梅, 何旭, 郑亮, 等. 激光诱导炽光技术用于碳烟粒径测试的研究[J]. 工程热物理学报, 2013, 34 (7): 1389-1392. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201307046.htm

    Li H M, He X, Zheng L, et al. Study on the measurement of soot particle size by laser induced incandescence[J]. Journal of Engineering Thermophysics, 2013, 34 (7): 1389-1392. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201307046.htm
    [56]
    岳宗宇, 张鹏, 陈贝凌, 等. 激光诱导炽光法定量测量碳烟[J]. 燃烧科学与技术, 2013, 19 (5): 434-443. http://www.cnki.com.cn/Article/CJFDTOTAL-RSKX201305009.htm

    Yue Z Y, Zhang P, Chen B L, et al. Quantitative measurement of soot particle by laser-induced incandescence[J]. Journal of Combustion Science and Technology, 2013, 19 (5): 434-443. http://www.cnki.com.cn/Article/CJFDTOTAL-RSKX201305009.htm
    [57]
    张鹏, 刘海峰, 陈贝凌, 等. 掺混含氧燃料的柴油替代物部分预混火焰中多环芳香烃的荧光光谱和碳烟浓度[J]. 物理化学学报, 2015, 31 (1): 32-40. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201501006.htm

    Zhang P, Liu H F, Chen B L, et al. Concentration in partially premixed flames of diesel surrogate containing oxygenated additives[J]. Acta Physico-Chimica Sinica, 2015, 31 (1): 32-40. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201501006.htm
    [58]
    张鹏, 刘海峰, 陈贝凌, 等. 协流部分预混燃烧器设计及激光诊断测量[J]. 燃烧科学与技术, 2015, 21 (2): 157-164. http://www.cnki.com.cn/Article/CJFDTOTAL-RSKX201502010.htm

    Zhang P, Liu H F, Chen B L, et al. Design of co-flow partially premixed burner and laser diagnostic measurements[J]. Journal of Combustion Science and Technology, 2015, 21 (2): 157-164. http://www.cnki.com.cn/Article/CJFDTOTAL-RSKX201502010.htm
    [59]
    高永利, 何旭, 李红梅, 等. 激光能量密度对激光诱导炽光技术测试碳烟粒径的影响[J]. 红外与激光工程, 2014, 43 (8): 2425-2430. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201408006.htm

    Gao Y L, He X, Li H M, et al. Impact of laser fluence on test of soot particle size by laser induced incandescence[J]. Infrared and Lased Engineering, 2014, 43 (8): 2425-2430. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201408006.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article Metrics

    Article views (256) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return