Kong Shangfeng, Feng Feng, Deng Hanyu. Breakup of a kerosene droplet at high Weber numbers[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 20-25. doi: 10.11729/syltlx20160106
Citation: Kong Shangfeng, Feng Feng, Deng Hanyu. Breakup of a kerosene droplet at high Weber numbers[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 20-25. doi: 10.11729/syltlx20160106

Breakup of a kerosene droplet at high Weber numbers

doi: 10.11729/syltlx20160106
  • Received Date: 2016-07-04
  • Rev Recd Date: 2016-09-06
  • Publish Date: 2017-02-25
  • In order to study the influence of the airstream velocity and droplet initial diameter on the secondary atomization process and the Rayleigh-Taylor wave, the experiment of recording the breakup process of a kerosene droplet at high Weber numbers was conducted, where the photographs were taken by a high speed camera.The analysis based on the Rayleigh-Taylor instability theory which includes viscosity and surface tension was done. The calculation was conducted in order to predict the wavelength of the most unstable Rayleigh-Taylor wave and breakup time, and the results were compared with the experimental data. The results indicate that the catastrophic breakup takes place when the Weber number is greater than 321. The airstream velocity and droplet initial diameter have great influence on the wavelength of the Rayleigh-Taylor wave with the maximum growth rate, the growth rate and the critical wavelength. The Rayleigh-Taylor instability theory which contains the viscosity and surface tension fits the experimental data well when being used to predict the wavelength of the most unstable Rayleigh-Taylor wave, the error less than 6%. Setting the value of M to be 8.9 can minimize the breakup time error.
  • loading
  • [1]
    徐旭, 陈兵, 徐大军. 冲压发动机原理及技术[M]. 北京: 北京航空航天大学出版社, 2014: 193-195.

    Xu X, Chen B, Xu D J. Theory and technology of ramjet[M]. Beijing: Publishing House of Beihang University, 2014: 193-195.
    [2]
    曹建明. 喷雾学[M]. 北京: 机械工业出版, 2005: 10-11.

    Cao J M. Atomization[M]. Beijing: Publishing House of Mechanical Industry, 2005: 10-11.
    [3]
    Hsiang L P, Faeth G M. Drop deformation and breakup due to shock wave and steady disturbances[J]. International Journal of Multiphase Flow, 1995, 21 (4): 545-560. doi: 10.1016/0301-9322(94)00095-2
    [4]
    刘静. 超声速气流中横向燃油喷雾的数值模拟和实验研究[D]. 北京: 北京航空航天大学, 2010.

    Liu J. Numerical and experimental investigation of fuel spray in supersonic cross flow[D]. Beijing: Beihang University, 2010.
    [5]
    Guildenbecher D R, López-Rivera C, Sojka P E. Secondary atomization[J]. Experiments in Fluids, 2009, 46 (3): 371-402. doi: 10.1007/s00348-008-0593-2
    [6]
    Liu A B, Reitz R D. Mechanisms of air-assisted liquid atomization[J]. Atomization&Sprays, 1993, 3 (1): 55-75. http://cn.bing.com/academic/profile?id=667c0a8c9f4739b00d0d9574d4f66a4a&encoded=0&v=paper_preview&mkt=zh-cn
    [7]
    Hwang S S, Liu Z, Reitz R D, et al. Breakup mechanisms and drag coefficients of high-speed vaporizing liquid drops[J]. Atomization&Sprays, 1996, 6 (3): 353-376. https://www.researchgate.net/publication/238198526_Breakup_mechanisms_and_drag_coecients_of_high-speed_vaporizing_liquid_drops
    [8]
    Joseph D D, Beavers G S, Funada T. Rayleigh-Taylor instability of viscoelastic drops at high Weber numbers[J]. Journal of Fluid Mechanics, 1999, 453 (6): 109-132. https://www.aem.umn.edu/people/faculty/joseph/papers/RTI_We2001.pdf
    [9]
    Joseph D D, Belanger J, Beavers G S. Breakup of a liquid drop suddenly exposed to a high-speed airstream[J]. International Journal of Multiphase Flow, 1999, 25 (6-7): 1263-1303. doi: 10.1016/S0301-9322(99)00043-9
    [10]
    Theofanous T G, Li G J, Dinh T N. Aerobreakup in rarefied supersonic gas flows[J]. Journal of Fluids Engineering, 2004, 126 (4): 516-527. doi: 10.1115/1.1777234
    [11]
    蒋德军, 赵辉, 刘海峰, 等. 黏性流体的二次雾化特性[J]. 石油学报: 石油加工, 2011, 27 (4): 575-582. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG201104017.htm

    Jiang D J, Zhao H, Liu H F, et al. Experimental characteristics of viscous fluid secondary breakup[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2011, 27 (4): 572-582. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG201104017.htm
    [12]
    赵辉. 同轴气流式雾化机理研究[D]. 上海: 华东理工大学, 2012.

    Zhao H. Studying on the mechanism of coaxial air-blast atomization[D]. Shanghai: East China University of Science and Technology, 2012.
    [13]
    Shraiber A A, Podvysotsky A M, Dubrovsky V V. Deformation and breakup of drops by aerodynamic forces[J]. Atomization&Sprays, 1996, 6 (6): 667-692. https://www.researchgate.net/publication/282755132_Deformation_and_breakup_of_drops_by_aerodynamic_forces
    [14]
    Taylor G I. The shape and acceleration of a drop in a high speed air stream[J]. The Scientific Papers of GI Taylor, 1963, 3: 457-464.
    [15]
    Chandrasekhar S. Hydrodynamic and hydromagnetic stability[D]. London: Oxford University Press, 1961.
    [16]
    Orourke P J, Amsden A A. The TAB method for numerical calculation of spray droplet breakup[C]. International Fuels and Lubricants Meeting and Exposition, Toronto, Ontario, 1987: 1.
    [17]
    Lopez R C. Secondary breakup of inelastic non-Newtonian liquid drops[D]. Indiana: Purdue University, 2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (417) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return