Wang Yuhui, Le Jialing, Yang Yang, et al. Study on combustion and flow characteristics in a rotating detonation combustor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 32-38. doi: 10.11729/syltlx20160119
Citation: Wang Yuhui, Le Jialing, Yang Yang, et al. Study on combustion and flow characteristics in a rotating detonation combustor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 32-38. doi: 10.11729/syltlx20160119

Study on combustion and flow characteristics in a rotating detonation combustor

doi: 10.11729/syltlx20160119
  • Received Date: 2016-08-08
  • Rev Recd Date: 2016-09-13
  • Publish Date: 2017-02-25
  • A rotating detonation combustor with the outer diameter100mm, the inner diameter 80mm and the axial length 117 mm for the detonation channel was designed. There is no exhaust nozzle attached to the combustor. Numerical and experimental studies were carried out to study combustion and flow characteristics under different equivalence ratio conditions. The air flows into the combustor through 60 orifices each with 2mm in diameter, and the hydrogen gas flows into the combustor through an annular channel with 2mm in width. The maximum total pressures of hydrogen and air can be 12 and 10.5MPa, respectively. When the equivalence ratio is greater than 2, deflagration occurs outside the combustor. When the equivalence ratio is close to 1, multiple counter-rotating detonation waves move in the combustor and the average detonation velocities are lower than 1000m/s. When the equivalence ratio is less than 0.58, only one detonation wave rotates. The detonation velocity is 1274m/s for the equivalence ratio 0.55. The rotating detonation engine without cooling ran for 17 seconds at the equivalence ratio 1 and apparent erosion wasn't found. Three detonation waves are co-rotating with velocities 1998m/s near the outer wall for the mass flow rate 400 g/s in the numerical study.
  • loading
  • [1]
    Wolański P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34 (1): 125-158. doi: 10.1016/j.proci.2012.10.005
    [2]
    Wang Y, Wang J. Coexistence of detonation with deflagration in rotating detonation engines[J]. Int J Hydrogen Energy, 2016. DOI: 10. 1016/j. ijhydene. 2016. 06. 026
    [3]
    Wang Y, Yang J, Zhong C. Shock effects on rotating detonation waves in the hydrogen-air mixture[R]. AIAA 2016-4185.
    [4]
    Ishihara K, Kato Y, Matsuoka K, et al. Performance evaluation of a rotating detonation engine with conical-shape tail[R]. AIAA-2015-0630, 2015.
    [5]
    Tang X, Wang J, Shao Y. Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor[J]. Combust Flame, 2015, 162: 997-1008. doi: 10.1016/j.combustflame.2014.09.023
    [6]
    Anand V, George A, Gutmark E. Hollow rotating detonation combustor[R]. AIAA 2016-0124.
    [7]
    Lin W, Zhou J, Liu S, et al. An experimental study on CH4/O2 continuously rotating detonation wave in a hollow combustion chamber[J]. Exp Therm Fluid Sci, 2015, 62: 122-130. doi: 10.1016/j.expthermflusci.2014.11.017
    [8]
    Wang Y, Le J, Yang J. Criteria for rotating detonation to pass obstacles near the inlet[R]. AIAA-2016-4879, 2016.
    [9]
    Yao S, Liu M, Wang J. Numerical investigation of spontaneous formation of multiple detonation wave fronts in rotating detonation engine[J]. Combust Sci Technol, 2015, 187: 1867-1878. doi: 10.1080/00102202.2015.1067202
    [10]
    Suchocki J A, Yu S J, Hoke J L, et al. Rotating detonation engine operation[R]. AIAA-2012-0119, 2012.
    [11]
    Fotia M, Schauer F, Kaemming T, et al. Study of the experimental performance of a rotating detonation engine with nozzled exhaust flow[R]. AIAA-2015-0631, 2015.
    [12]
    Fotia M, Schauer F, Hoke J. Experimental study of performance scaling in rotating detonation engines operated on hydrogen and gaseous hydrocarbon fuel[R]. AIAA-2015-3626, 2015.
    [13]
    Wang Y. Rotating detonation in a combustor of trapezoidal cross section for the hydrogen-air mixture[J]. Int J Hydrogen Energ, 2016, 41: 5605-5616. doi: 10.1016/j.ijhydene.2016.02.028
    [14]
    Cocks P A T, Holley A T, Greene C B, et al. Development of a high fidelity RDE simulation capability[R]. AIAA-2015-1823, 2015.
    [15]
    Wang Y, Wang J, Li Y, et al. Induction for multiple rotating detonation waves in the hydrogen-oxygen mixture with tangential flow[J]. Int J Hydrogen Energy, 2014, 39 (22): 11792-11797. doi: 10.1016/j.ijhydene.2014.05.162
    [16]
    Rankin B A, Richardson D R, Caswell A W, et al. Imaging of OH* chemiluminescence in an optically accessible nonpremixed rotating detonation engine[R]. AIAA-2015-1604, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (292) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return