Hong Yanji, Song Junling, Rao Wei, et al. Progress on tunable diode laser absorption tomography technique for combustion diagnostics[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 43-54. doi: 10.11729/syltlx20160177
Citation: Hong Yanji, Song Junling, Rao Wei, et al. Progress on tunable diode laser absorption tomography technique for combustion diagnostics[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 43-54. doi: 10.11729/syltlx20160177

Progress on tunable diode laser absorption tomography technique for combustion diagnostics

doi: 10.11729/syltlx20160177
  • Received Date: 2017-02-20
  • Rev Recd Date: 2017-07-16
  • Publish Date: 2018-02-25
  • Tunable Diode Laser Absorption Tomography(TDLAT) technique is a new technique for 2D flow field diagnostics, which combines the Tunable Diode Laser Absorption Spectroscopy technique (TDLAS) and the computer tomography (CT). It has wide applications in hot, high-speed and toxic gas diagnostics, especially for combustion and propulsions in harsh environments, due to the merits of high sensitivity and noise resistance. Firstly, the fundamentals of the TDLAT are presented. Secondly, the TDLAT system is divided into four stages:the optical measurement system, the data processing system, the reconstruction algorithm and the data presentation. The progressing on the four stages and key technologies are discussed. Thirdly, some examples of applications of TDLAT sensors in practical combustion diagnostics are presented, including scramjet engines, aero-propulsion engine and coal-field combustion. Finally, the development tendency and conclusions are given. This paper can provide reference for the researchers to comprehend the progress and key techniques of TDLAT.
  • loading
  • [1]
    Bolshov M A, Kuritsyn Y A, Romanovskii Y V. Tunable diode laser spectroscopy as a technique for combustion diagnostics[J]. Spectrochimca Acta B, 2015, 106:45-66. doi: 10.1016/j.sab.2015.01.010
    [2]
    Wright P, Johnson M, Fisher E, et al. Progress towards non-intrusive optical measurement of gas turbine exhaust species distributions[C]. Aerospace Conference, IEEE, 2015, 7119019.
    [3]
    洪延姬.燃烧场吸收光谱诊断技术研究进展[J].实验流体力学, 2014, 28(3):12-15. doi: 10.11729/syltlx2014ty02

    Hong Y. Progress in absorption spectroscopy diagnosis techniques for combustion flowfields[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3):12-25. doi: 10.11729/syltlx2014ty02
    [4]
    Hanson R K. Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems[J]. Proceedings of the Combustion Institute, 2011, 33(1):1-40. doi: 10.1016/j.proci.2010.09.007
    [5]
    Zhou X, Liu X, Jeffries J B, et al. Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser[J]. Measurement Science and Technology, 2003, 14:1459-1468. doi: 10.1088/0957-0233/14/8/335
    [6]
    Zhou X, Liu X, Jefferies J B, et al. Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines[J]. Measurement Science and Technology, 2005, 16:2437-2445. doi: 10.1088/0957-0233/16/12/006
    [7]
    Liu X, Jefferies J B, Hanson R K, et al. Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature[J]. Applied Physics B, 2006, 82:469-478. doi: 10.1007/s00340-005-2078-9
    [8]
    Chang L S, Strand C L, Jeffries J B, et al. Supersonic mass-flux measurements via tunable diode laser absorption and nonuniform flow modeling[J]. AIAA Journal, 2011, 49(12):2783-2791. doi: 10.2514/1.J051118
    [9]
    Chang L S. Development of a diode laser sensor for measurement of mass flux in supersonic flow[D]. Stanford University, 2011.
    [10]
    Cai W, Kaminski C F. Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy[J]. Applied Physics Letters, 2014, 104:154106. doi: 10.1063/1.4871976
    [11]
    Guha A, Schoeg I M. Tomographic imaging of flames:assessment of reconstruction error based on simulated results[J]. Journal of Propulsion and Power, 2014, 30(2):350-359. doi: 10.2514/1.B34831
    [12]
    Gillet B, Hardalupas Y, Kavounides C, et al. Infrared Absorption for Measurement of Hydrocarbon Concentration in Fuel/Air Mixtures[J]. Applied Thermal Engineering, 2004, (24):1633-1653. https://www.sciencedirect.com/science/article/pii/S1359431103003880
    [13]
    Wang F, Cen K F, Li N, et al. Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode[J]. Measurement Science and Technology, 2010, 21(4):1-10.
    [14]
    Wang F, Wu Q, Huang Q, et al. Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane air flame using TDLAS-based tomography technology[J]. Optics Communications, 2015, 346:53-63. doi: 10.1016/j.optcom.2015.02.015
    [15]
    Song J, Hong Y, Wang G et al. Algebraic tomographic reconstruction of two-dimensional gas temperature based on tunable diode laser absorption spectroscopy[J]. Applied Physics B, 2013, 112:529-537. doi: 10.1007/s00340-013-5435-0
    [16]
    Busa K M, Ellison E N, McGovern B J, et al. Measurements on NASA langley durable combustor rig by TDLAT preliminary results[R]. AIAA-2013-0696, 2013.
    [17]
    Ma L, Cai W, Caswell A W, et al. Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy[J]. Optics Express, 2009, 17(10):8602-8613. doi: 10.1364/OE.17.008602
    [18]
    Carey S J, McCann H, Hindle F P, et al. Chemical Species Tomography by Near Infra-red Absorption[J]. Chemical Engineering Journal, 2000, (77):111-118. https://www.sciencedirect.com/science/article/pii/S1385894799001394
    [19]
    Wright P, Terzija N, Davidson J L, et al. High-speed chemical species tomography in a multi-cylinder automotive engine[J]. Chemical Engineering Journal, 2010, (158):2-10. http://cn.bing.com/academic/profile?id=26b9e91c19c83dc5c47cec9d112a7169&encoded=0&v=paper_preview&mkt=zh-cn
    [20]
    Terzija N, Davidson J L, Garcia-Stewart C A, et al. Image optimization for chemical species tomography with an irregular and sparse beam array[J]. Measurement Science and Technology, 2008, 19(9):094007. doi: 10.1088/0957-0233/19/9/094007
    [21]
    Deguchi Y, Yasui D, Adachi A. Development of 2D Temperature and Concentration Measurement Method Using Tunable Diode Laser Absorption Spectroscopy[J]. Journal of Mechanics Engineering and Automation, 2012, (2):543-549. http://cn.bing.com/academic/profile?id=f935db3b221e11e923c1bc482d24c790&encoded=0&v=paper_preview&mkt=zh-cn
    [22]
    Deguchi Y, Kamimoto T, Kiyota Y. Time resolved 2D concentration and temperature measurement using CT tunable laser absorption spectroscopy[J]. Flow Measurement and Instrumentation, 2015, 46:312-318. doi: 10.1016/j.flowmeasinst.2015.06.025
    [23]
    Choi D W, Jeon M G, Cho G R, et al. Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption Tunable Diode Laser Absorption Spectroscopy (TDLAS)[J]. Journal of Thermal Science, 2016, 25(1):84-89. doi: 10.1007/s11630-016-0837-z
    [24]
    Liu C, Xu L, Chen J, et al. Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration[J]. Optics express, 2015, 23(17):22494-22511. doi: 10.1364/OE.23.022494
    [25]
    Cai W, Ma L. Hyperspectral tomography based on proper orthogonal decomposition as motivated by imaging diagnosostics of unsteady reactive flows[J]. Applied Optics, 2010, 49(4):601-610. doi: 10.1364/AO.49.000601
    [26]
    Busa K M, Brown M S. Fast Data processing for optical absorption measurements[R]. AIAA-2016-0660, 2016.
    [27]
    Xu L, Liu C, Jing W, et al. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction[J]. Review of Scientific Instruments, 2016, 87:013101. doi: 10.1063/1.4939052
    [28]
    姚路, 刘文清, 阚瑞峰, 等.小型化TDLAS发动机测温系统的研究及进展[J].实验流体力学, 2015, 19(2):71-76. http://html.rhhz.net/SYLTLX/html/2015-1-71.htm

    Yao L, Liu W, Kan R. Research and development of a compact TDLAS system to measure scramjet combustion temperature[J]. Journal of Experiments in Fluid Mechanics, 2015, 19(2):71-76. http://html.rhhz.net/SYLTLX/html/2015-1-71.htm
    [29]
    Terzija N, McCann H. Wavelet-based image reconstruction for hard-field tomography with severely limited data[J]. IEEE Sensors Journal, 2011, 11(9):1885-1893. doi: 10.1109/JSEN.2010.2100378
    [30]
    Li J, Yu B, Fischer H. Wavelet transform based on the optimal wavelet pairs for tunable diode laser absorption spectroscopy signal processing[J]. Applied Spectroscopy, 2015, 69(4):496-506. doi: 10.1366/14-07629
    [31]
    Smith L M, Keefer D R, Sudharsanan S I. Abel inversion using transform techniques[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1988, 39(5):367-373. doi: 10.1016/0022-4073(88)90101-X
    [32]
    Kak A C, Slaney M. Principles of computerized tomographic imaging[M]. New York:IEEE Press, 1999.
    [33]
    Goulard R, Emmerman P J. Absorption diagnostics[R]. AIAA-79-0085, 1979.
    [34]
    Dash C J. One-dimensional tomography:a comparison of Abel, onion-peeling, and filtered backprojection methods[J]. Applied Optics, 1992, 31(8):1146-1152. doi: 10.1364/AO.31.001146
    [35]
    Villarreal R, Varghese P L. Frequency-resolved absorption tomography with tunable diode lasers[J]. Applied Optics, 2005, 44(31):6786-6795. doi: 10.1364/AO.44.006786
    [36]
    Shepp L A, Logan B F. The Fourier reconstruction of a head section[J]. IEEE Transaction on Nuclear Science, 1974, NS-21:21-43. http://citeseerx.ist.psu.edu/showciting?cid=982068
    [37]
    Bryner E, Sharma M G, McDaniel J C, et al. Tunable diode laser absorption technique development for determination of spatially resolved water concentration and temperature[R]. AIAA-2010-0299, 2010.
    [38]
    Bryner E, Busa K, MacDaniel J C, et al. Spatially resolved temperature and water vapor concentration distributions in a flat flame burner by tunable diode laser absorption tomography[R]. AIAA-2011-1291, 2011.
    [39]
    Busa K M, Bryner E, MacDaniel J C, et al. Demonstration of capability of water flux measurement in a scramjet combustor using tunable diode laser absorption tomography and stereoscopic PIV[R]. AIAA-2011-1294, 2011.
    [40]
    Busa K M, Ellison E N, MacGovern B J, et al. Measurements on NASA Langley durable combustor rig by TDLAT: Preliminary Results[R]. AIAA-2013-0696, 2013.
    [41]
    宋俊玲, 洪延姬, 王广宇. H2O温度二维分布的滤波反投影重建[J].强激光与粒子束, 2012, 24(9):2073-2078. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=qjgy201209011&dbname=CJFD&dbcode=CJFQ

    Song J L, Hong Y J, Wang G Y. Two-dimensional water temperature reconstruction by filtered back-projection method based on tunable diode laser absorption technique[J]. High Power Laser and Particle Beams, 2012, 24(9):2073-2078. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=qjgy201209011&dbname=CJFD&dbcode=CJFQ
    [42]
    Xia H, Xu Z, Kan R, et al. Numerical study of two-dimensional water vapor concentration and temperature distribution of combustion zones using tunable diode laser absorption tomography[J]. Infrared Physics & Technology, 2015, 72:170-178. http://cn.bing.com/academic/profile?id=9e213f3ff4a6c9bca095bbd796444442&encoded=0&v=paper_preview&mkt=zh-cn
    [43]
    Llacer J, Meng J D. Matrix-based image reconstruction method for tomography[J]. IEEE Transactions on Nuclear Science, 1995, 32(1):855-864. http://citeseerx.ist.psu.edu/showciting?cid=2437792
    [44]
    Gordon R, Bender R, Herman G T. Algebraic reconstruction techniques (ART) for three-dimensinal electron microscopy and X-ray photography[J]. Journal of Theorectical Biology, 1970, 29(3):471-481. doi: 10.1016/0022-5193(70)90109-8
    [45]
    Herman G T. Fundamentals of computerized tomography:image reconstruction from projections[M]. New York:Springer, 2009.
    [46]
    Bryner E, Diskin G S, Goyne C P, et al. Development of an infrared laser absorption tomography system for a scramjet combustor[R]. AIAA-2006-3445, 2006.
    [47]
    Kasyutich V L, Martin P A. Towards a two-dimensional concentration and temperature laser absorption tomography sensor system[J]. Applied Physics B, 2011(102):149-162. doi: 10.1007/s00340-010-4123-6.pdf
    [48]
    Wood M P, Ozanyan K B. Temperature mapping from molecular absorption tomography[C]//Sensors, IEEE, 2011: 865-869.
    [49]
    Daun K J. Infrared species limited data tomography through tikhonov reconstruction[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2010, 111:105-115. http://cn.bing.com/academic/profile?id=2211653151d4fec064549febcefc8f47&encoded=0&v=paper_preview&mkt=zh-cn
    [50]
    李宁, 翁春生.基于多波长激光吸收光谱技术的气体浓度与温度二维分布遗传模拟退火重建研究[J].物理学报, 2010, 59(10):6914-6920. doi: 10.7498/aps.59.6914

    Li N, Weng C. Gas concentration and temperature reconstruction by genetic simulated annealing algorithm based on multi-wavelengths diode laser absorption spectroscopy[J]. Acta Physica Sinica, 2010, 59(10):6914-6920. doi: 10.7498/aps.59.6914
    [51]
    Li N, Weng C. Modified adaptive algebraic tomographic reconstruction for gas distribution from incomplete projection by a two-wavelength absorption scheme[J]. Chinese Optics Letters, 2011, 9(6):061201. doi: 10.3788/COL
    [52]
    李金义, 朱可柯, 杜振辉, 等.一种基于TDLAS的高分辨率二维温度场重建算法及数值仿真[J].实验流体力学, 2014, 28(3):63-71. doi: 10.11729/syltlx20130059

    Li J, Zhu K, Du Z. A high-resolution algorithm for 2D temperature reconstruction using TDLAS and numerical simulation[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3):63-71. doi: 10.11729/syltlx20130059
    [53]
    Xia H, Kan R, Xu Z, et al. Two-step tomographic reconstructions of temperature and species concentration in a flame based on laser absorption measurements with a rotation platform[J]. Optics and Lasers in Engineering, 2017, 90:10-18. doi: 10.1016/j.optlaseng.2016.09.005
    [54]
    Ma L, Cai W. Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging[J]. Applied Optics, 2008, 47(21):3751-3759. doi: 10.1364/AO.47.003751
    [55]
    Li F, Yu X, Gu H, et al. Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors[J]. Appiled Optics, 2011, 50(36):6697-6707. doi: 10.1364/AO.50.006697
    [56]
    Jackson K R, Gruber M R, Buccellato S. HIFiRE flight 2 overview and status update 2011[R]. AIAA-2011-2202, 2011.
    [57]
    Brown M S. Application of diode-laser-based measurements in hypersonic flows[R]. AIAA-2012-0555, 2012.
    [58]
    Ma L, Li X, Sanders S T, et al. 50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography[J]. Optics Express, 2013, 21(1):1152-1162. doi: 10.1364/OE.21.001152
    [59]
    吕晓静, 李宁, 翁春生.基于多谱线吸收光谱技术的脉冲爆轰发动机管外流场测试研究[J].光谱学与光谱分析, 2016, 3:004. http://manu13.magtech.com.cn/gpx/CN/abstract/abstract8235.shtml

    Lyu X, Li N, Weng C. The diagnostics of detonation flow external field based on multispectral absorption spectroscopy technology[J]. Spectroscopy and Spectral Analysis. 2016, 3:004. http://manu13.magtech.com.cn/gpx/CN/abstract/abstract8235.shtml
    [60]
    ZoloBOSS Boiler Optimization Spectroscopy Sensor Operator Manual. www. zolotech. com, 2014-07-25.
    [61]
    Ruducing green house gas emissions via efficient coal combustion. www. zolotech. com, 2014-07-25.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(1)

    Article Metrics

    Article views (648) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return