Huang Wentao, Xiang Yang, Wang Xiao, et al. Experimental study on drag-reduction mechanisms based on the physical characteristic of tip vortex[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 53-59. doi: 10.11729/syltlx20160194
Citation: Huang Wentao, Xiang Yang, Wang Xiao, et al. Experimental study on drag-reduction mechanisms based on the physical characteristic of tip vortex[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 53-59. doi: 10.11729/syltlx20160194

Experimental study on drag-reduction mechanisms based on the physical characteristic of tip vortex

doi: 10.11729/syltlx20160194
  • Received Date: 2016-12-11
  • Rev Recd Date: 2017-08-23
  • Publish Date: 2017-10-25
  • The drag-reduction mechanisms based on the physical characteristic of the tip vortex are investigated through experiments in the wind tunnel. Through 3DPIV (3D Particle Image Velocimetry) experiments, the physical characteristic of tip vortex is obtained, and the induced drag of wing is calculated based on the aerodynamic force measurement setup of wingtip proposed in this paper. Experimental results show that the non-dimensional circulation of the tip vortex increases with the increasing angle of attack and the wind speed. Meanwhile, with the decrease of the non-dimension circulation of the tip vortex or the increase of the spacing between the wing and the tip vortex, the induced drag becomes smaller and smaller. Specifically, the induced drag reduction can be achieved by inhibiting the non-dimensional intensity of the tip vortex, which weakens the interaction between the main wing and the tip vortex.
  • loading
  • [1]
    马汉东, 崔尔杰.大型飞机阻力预示与减阻研究[J].力学与实践, 2007, 29(2):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-LXYS200702001.htm

    Ma H D, Cui E J. Drag prediction and reduction for civil transportation aircraft[J]. Mechanics in Engineering, 2007, 29(2):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-LXYS200702001.htm
    [2]
    Birch D, Lee T. Structure and induced drag of a tip vortex[J]. Journal of Aircraft, 2004, 41(5):1138-1145. doi: 10.2514/1.2707
    [3]
    Devenport W J, Rife M C, Liapis S I, et al. The structure and development of a wing-tip vortex[J]. Journal of Fluid Mechanics, 1996, 312:67-106. doi: 10.1017/S0022112096001929
    [4]
    江永泉.翼梢小翼的空气动力机理[J].民用飞机设计与研究, 1993, (3):16-22. http://www.cqvip.com/qk/91315X/199303/1123823.html
    [5]
    顾蕴松, 程克明, 郑新军.翼尖涡流场特性及其控制[J].空气动力学学报, 2008, 26(4):446-451. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200804006.htm

    Gu Y S, Cheng K M, Zheng X J. Flow field characteristics of wing tips vortex and its control[J]. Acta Aerodynamica Sinica, 2008, 26(4):446-451. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200804006.htm
    [6]
    Gatto A, Mattioni F, Friswell M I. Experimental investigation of bistable winglets to enhance wing lift takeoff capability[J]. Journal of Aircraft, 2009, 46(2):647-655. doi: 10.2514/1.39614
    [7]
    Sun R M, Daichin. Experimental investigation on tip vortices and aerodynamics[J]. Theoretical and Applied Mechanics Letters, 2011, 1(3):1-6. http://www.sciencedirect.com/science/article/pii/S2095034915300489
    [8]
    Ashurst W T, Meiburg E. Three-dimensional shear layers via vortex dynamics[J]. J Fluid Mech, 1988, 189:87-116. doi: 10.1017/S0022112088000928
    [9]
    Knio O M, Ghoniem A F. Numerical study of a 3-dimensional vortex method[J]. Journal of Computational Physics, 1990, 86(1):75-106. doi: 10.1016/0021-9991(90)90092-F
    [10]
    Cai J. LES for wing tip vortex around an airfoil[D]. Texas:University of Texas, 2006:74-75.
    [11]
    Lee C S. Flow structure and scaling laws in lateral wing-tip blowing[J]. AIAA J, 1989, 27:1002-1007. doi: 10.2514/3.10211
    [12]
    Lee C S, Tavella D. Flow structure of lateral wing-tip blowing[R]. AIAA-1986-1810, 1986.
    [13]
    Margaris P, Gursul I. Effect of steady blowing on wing tip flowfield[R]. AIAA-2004-2619, 2004.
    [14]
    Catalano F M, Ceron-Mufioz H D. Experimental analysis of the aerodynamic characteristics of adaptive multi-winglets[C]. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno:AIAA, 2005.
    [15]
    Falclio L, Gomes A A, Suleman A. Aero-structural design optimization of a morphing wingtip[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(10):1113-1124. doi: 10.1177/1045389X11417652
    [16]
    Boiler C, Kuo C M. Demonstration of adaptive structure performance on modular micro airvehicle[C]. 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando:AIAA, 2010.
    [17]
    Kroo I. Drag due to lift concepts for prediction and reduction[J]. Annual Review of Fluid Mechanics, 2001, 33:587-617. doi: 10.1146/annurev.fluid.33.1.587
    [18]
    Chao D D, Dam C P. Wing drag prediction and de-composition[R]. AIAA-2004-5074, 2004.
    [19]
    Ringuette M J, Milano M, Gharib M. Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates[J]. Journal of Fluid Mechanics, 2007, 581:453-468. doi: 10.1017/S0022112007005976
    [20]
    Dacles-Mariani J, Kwak D, Zilliac G G. On numerical errors and turbulence modeling in tip vortex flow prediction[J]. International Journal for Numerical Methods in Fluids, 1999, 30:65-82. doi: 10.1002/(ISSN)1097-0363
    [21]
    Takahashi R K, Mcalister P K W. Study of a wing-tip vortex using laser velocimetry[R]. NASA-Technical Memorandum-88343, Washington, D. C.:NASA, 1987.
    [22]
    Li J, Cai J, Liu C. Large eddy simulation of wing tip vortex in the near field[R]. Mathematics Preprint Series. The University of Texas at Arlington, 2007.
    [23]
    Bailey S C C, Tavoularis S. Measurements of the velocity field of a wing-tip vortex, wandering in grid turbulence[J]. J Fluid Mech, 2008, 601:281-315. https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/measurements-of-the-velocity-field-of-a-wing-tip-vortex-wandering-in-grid-turbulence/1CDB8F761B0DBBE814A822BE1098B949
    [24]
    Prasad A K, Jensen K. Scheimpflug stereo camera for particle image velocimetry in liquid flows[J]. Appl Opt, 1995, 34:7092. doi: 10.1364/AO.34.007092
    [25]
    Jardin T, Farcy A, David L. Three-dimensional effects in hovering flapping flight[J]. J Fluid Mech, 2012, 702:102-125. doi: 10.1017/jfm.2012.163
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (196) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return