Hu Zhiyun, Ye Jingfeng, Zhang Zhenrong, et al. Development of laser combustion diagnostic techniques for ground aero-engine testing[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 33-42. doi: 10.11729/syltlx20170135
Citation: Hu Zhiyun, Ye Jingfeng, Zhang Zhenrong, et al. Development of laser combustion diagnostic techniques for ground aero-engine testing[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 33-42. doi: 10.11729/syltlx20170135

Development of laser combustion diagnostic techniques for ground aero-engine testing

doi: 10.11729/syltlx20170135
  • Received Date: 2017-10-13
  • Rev Recd Date: 2017-12-14
  • Publish Date: 2018-02-25
  • Laser-based diagnostic techniques have the characteristics of non-intrusiveness, high temporal-spatial resolution and abundant measurement information, and have been demonstrated as powerful and indispensable tools for the turbulent combustion research of various engine devices.This paper reviews the basic principle, research status and development trend of several laser spectroscopic techniques, which have been used successfully in the measurements of engine combustion.Since there is no single laser diagnostic technique that can be applied under all circumstances, the particular application must be carefully considered according to the type of combustion flow and measurement requirements.For the temperature measurements, Coherent Anti-stokes Raman Scattering (CARS), as a point-wise technique, yields the best accuracy of less than 5% uncertainty for single-shot measurements.And the two color Planar Laser Induced Fluorescence (PLIF) technique may be employed to study temperature gradients or temperature fields but may lead to reduced absolute accuracy.For the velocity measurements, the Particle Image Velocimetry (PIV) technique is suitable for fine measurements of low-speed flow field, while the Hydroxyl Tagging Velocimetry (HTV) technique has been applied in high-temperature supersonic and even hypersonic flow fields with uncertainty less than 4%.In species concentration measurements, the Spontaneous Raman Scattering (SRS) and PLIF are used to measure the main components and the distribution of intermediate products, respectively.In terms of the high-temporal-spatial-resolution measurements of temperature, velocity and species concentrations in the aero-engine combustor, this paper reviews the basic principle, research status and development trend of relevant laser combustion diagnostic techniques.
  • loading
  • [1]
    胡志云, 张振荣, 刘晶儒, 等.用单次脉冲非稳腔空间增强探测CARS技术测量火焰温度[J].中国激光, 2004, 31(5):610-612. http://d.old.wanfangdata.com.cn/Periodical/zgjg200405024

    Hu Z Y, Zhang Z R, Liu J R, et al. Temperature measurement in CH4/air flame by single pulse USED CARS[J]. Chinese Journal of Lasers, 2004, 31(5):610-612. http://d.old.wanfangdata.com.cn/Periodical/zgjg200405024
    [2]
    Davis L C, Marko K A, Romai L. Angular distribution of coherent Raman emission in degenerate four-wave mixing with pumping by a single diffraction coupled laser beam:configurations for high spatial resolution[J]. Applied Optics, 1981, 20(9):1685-1690. doi: 10.1364/AO.20.001685
    [3]
    Hu Z Y, Liu J R, Ye J F, et al. Laser-based measurements of temperature, species and velocity in engine combustor[C]. Proceedings of SPIE, 2013.
    [4]
    Okojie R S, Danehy P M, Watkins A N, et al. An overview of NASA hypersonic experimental diagnostic and instrumentation technologies for ground and flight testing[R]. AIAA-2009-7279, 2009.
    [5]
    Steinberg A M, Arndt C M, Stopper U, et al. Diagnostic requirements for the development of low-emission, fuel-flexible gas turbine combustors[R]. AIAA-2012-0698, 2012.
    [6]
    Hassa C, Willert C, Fischer M, et al. Nonintrusive flowield, temperature and species measurements on a generic aeroengine combustor at elevated pressure[C]. Proceedings of ASME Turbo Expo, Barcelona, Spain, GT2006-90213, 2006.
    [7]
    Thariyan M, Bhuiyan A, Meyer S, et al. Dual-pump coherent anti-stokes raman scattering system for temperature and species measurements in an optically accessible high-pressure gas turbine combustor facility[J]. Meas Sci Technol, 2011, 22:015301. doi: 10.1088/0957-0233/22/1/015301
    [8]
    Mathew P T, Aizaz H B, Sameer V N, et al. Dual-pump CARS and OH-PLIF measurements at elevated pressures in a gas turbine combustor facility[R]. AIAA-2010-4808, 2010.
    [9]
    Brackmann C, Bood J, Afzelius M, et al. Thermometry in internal combustion engines via dual-broadband rotational coherent anti-stokes raman spectroscopy[J]. Meas Sci Technol, 2004, 15:R13-R25. http://cn.bing.com/academic/profile?id=1d935d165b98f7cae353e2cbb5b585d3&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    Magnotti G, Cutler A D, P Danehy. Development of a dual-pump CARS system for measurements in a supersonic combusting free jet[R]. AIAA-2012-1193, 2012.
    [11]
    赵建荣, 杨仕润, 俞刚. CARS在超音速燃烧研究中的应用[J].激光技术, 2000, 24(4):207-212. doi: 10.3969/j.issn.1001-3806.2000.04.013

    Zhao J R, Yang Sh R, Yu G. Study of supersonic combustion by CARS measurement technique[J]. Laser Technology, 2000, 24(4):207-212. doi: 10.3969/j.issn.1001-3806.2000.04.013
    [12]
    Cutler A D, Magnotti G, Cantu L, et al. Dual-pump CARS measurements in the university of virginia's dual-mode scramjet: configuration "A"[R]. AIAA-2012-0114, 2012.
    [13]
    李国华, 胡志云, 王晟, 等.基于相干反斯托克斯拉曼散射的二维温度场扫描测量[J].光学精密工程, 2016, 24(1):14-19. http://mall.cnki.net/magazine/Article/GXJM201601003.htm

    Li G H, Hu Z Y, Wang S, et al. 2D scanning CARS for temperature distribution measurement[J]. Optics and Precision Engineering, 2016, 24(1):14-19. http://mall.cnki.net/magazine/Article/GXJM201601003.htm
    [14]
    张立荣, 胡志云, 叶景峰, 等.移动式CARS系统测量超声速燃烧室出口温度[J].中国激光, 2013, 40(4):0408007. http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201304035.htm

    Zhang L R, Hu Z Y, Ye J F, et al. Mobile CARS temperature measurements at exhaust of supersonic combustor[J]. Chinese Journal of Lasers, 2013, 40(4):0408007. http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201304035.htm
    [15]
    Roy S, Meyer T R. Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals[J]. Applied Physics Letters, 2005, 87:264103. doi: 10.1063/1.2159576
    [16]
    Roy S, Gord J R, Patnaik A K. Recent advances in coherent anti-Stokes Raman scattering spectroscopy:fundamental developments and applications in reacting flows[J]. Progress in Energy and Combustion Science, 2010, 36:280-306. doi: 10.1016/j.pecs.2009.11.001
    [17]
    Roy S, Kulatilaka W D. Gas-phase single-shot thermometry at 1kHz using fs-CARS spectroscopy[J]. Optics Leters, 2009, 34(24):3857-3859. doi: 10.1364/OL.34.003857
    [18]
    Kulatilaka W D, Roy S. Effects of O2-CO2 polarization beating on femtosecond coherent anti-Stokes Raman scattering(fs-CARS) spectroscopy of O2[J]. Applied Physics B, 2011, 102:141-147. http://www.springerlink.com/content/fulltext.pdf?id=doi:10.1007/s00340-010-4188-2
    [19]
    关小伟, 刘晶儒, 黄梅生, 等. PLIF法定量测量甲烷-空气火焰二维温度场分布[J].强激光与粒子束, 2005, 17(2):173-176. http://www.wenkuxiazai.com/doc/dd33ee3d5727a5e9856a6187.html

    Guan X W, Liu J R, Huang M S, et al. Two-dimensional temperature field measurement in a methane-air flame by PLIF[J]. High Power Laser and Particle Beams, 2005, 17(2):173-176. http://www.wenkuxiazai.com/doc/dd33ee3d5727a5e9856a6187.html
    [20]
    Palmer J L, Hanson R K. Temperature imaging in a supersonic free jet of combustion gases with two-line OH fluorescence[J]. Applied Optics, 1996, 35(3):485-499. doi: 10.1364/AO.35.000485
    [21]
    Meier U E, Gabmann D W, Stricker W. LIF imaging and 2D temperature mapping in a model combustor at elevated pressure[J]. Aerospace Science and Technology, 2000, 4:403-414 doi: 10.1016/S1270-9638(00)00142-5
    [22]
    Kaminski C F, Engström J, Aldén M. Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence[J]. Proceedings of Combustion Institute, 1998, 27:85-93. doi: 10.1016/S0082-0784(98)80393-7
    [23]
    Medwell P R, Chan Q N, Kalt A M, et al. Instantaneous temperature imaging of diffusion flames using two-line atomic fluorescence[J]. Applied Spectroscopy, 2010, 64:173-176. doi: 10.1366/000370210790619573
    [24]
    Chan Q N, Medwell P R, Alwahabi Z T, et al. Assessment of interferences to nonlinear two-line atomic fluorescence (NTLAF) in sooty flames[J]. Applied Physics B, 2011, 104(1):189-198. doi: 10.1007/s00340-011-4497-0
    [25]
    叶景峰, 胡志云, 刘晶儒, 等.分子标记速度测量技术及应用研究进展[J].实验流体力学, 2015, 29(3):11-17. http://html.rhhz.net/SYLTLX/html/2015-3-11.htm

    Ye J F, Hu Z Y, Liu J R, et al. Development and application of molecular tagging velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3):11-17. http://html.rhhz.net/SYLTLX/html/2015-3-11.htm
    [26]
    Wehrmeyer J A, Ribarov L A, Oguss D A, et al. Flame flow tagging velocimetry with 193-nm H2O photodissociation[J]. Applied Optics, 1999, 38(22):6912-6917. http://cn.bing.com/academic/profile?id=7eae4edfc09dcd8476832337f129421f&encoded=0&v=paper_preview&mkt=zh-cn
    [27]
    Pitz R W, Lahr M D, Douglas Z W, et al. Hydroxyl tagging velocimetry in a supersonic flow over a cavity[J]. Applied Optics, 2005, 44(31):6692-6700. doi: 10.1364/AO.44.006692
    [28]
    Alexander A, Wehrmeyer J, Runge W, et al. Nonintrusive measurement of gas turbine exhaust velocity using hydroxyl tagging velocimetry[R]. AIAA-2008-3709, 2008.
    [29]
    Gendrich C P, Koochesfahani M M. A spatial correlation technique for estimating velocity fields using molecular tagging velocimetry (MTV)[J]. Experiments in Fluids, 1996, 22(1):67-77. doi: 10.1007/BF01893307
    [30]
    Ramsey M, Pitz R. Template matching for improved accuracy in molecular tagging velocimetry[J]. Expriments in Fluids, 2011, 51(3):811-819. doi: 10.1007/s00348-011-1098-y
    [31]
    刘建胜, 刘晶儒, 张振荣, 等.利用拉曼散射法测量燃烧场的温度及组分浓度[J].光学学报, 2000, 20(9):1263-1267. https://mall.cnki.net/huiyi-AGLU201207001017.html

    Liu J S, Liu J R, Zhang Z R, et al. Raman scattering measurements for multi-species and temperature in combustion[J]. Acta Optica Sinica, 2000, 20(9):1263-1267. https://mall.cnki.net/huiyi-AGLU201207001017.html
    [32]
    Grady N R, Frankland J H, Pitz R W. UV Raman scattering measurements of supersonic reacting flow over a piloted, ramped cavity[R]. AIAA-2012-0614, 2012.
    [33]
    Wedr L, Meier W, Kutne P, et al. Single-pulse 1D laser Raman scattering applied in a gas turbine model combustor at elevated pressure[J]. Proceedings of the Combustion Institute, 2007, 31:3099-3106. doi: 10.1016/j.proci.2006.07.148
    [34]
    Locke R J. Temperature and species measurements of combustion produced by a 9-point lean direct injector[R]. AIAA-2013-0562, 2013.
    [35]
    Eckbrech A C, Anderson T J. Multi-color CARS for simultaneous measurements of multiple combustion species[C]. SPIE-Laser Applications to Chemical Dynamics, 1987.
    [36]
    Lucht R P. Three-laser coherent anti-Stokes Raman scattering measurements of two species[J]. Optics Letters, 1987, 12(2):78-80. doi: 10.1364/OL.12.000078
    [37]
    Antcliff R R, Jarrett O J. Multispecies coherent anti-Stokes Raman scattering instrument for turbulent combustion[J]. Review of Scientific Instruments, 1987, 58(11):2075-2080. doi: 10.1063/1.1139466
    [38]
    Paul P H, Najm H N. Planar laser-induced fluorescence imaging of flame heat release rate[C]. Proc Combust Inst, 1998.
    [39]
    Byrne S O, Stotz I, Houwing A F P, et al. OH PLIF imaging of supersonic combustion using cavity injection[R]. AIAA-2005-3357, 2005.
    [40]
    Strakey P A, Woodruff S D, Williams T C, et al. OH-PLIF measurements of high-pressure, hydrogen augmented premixed flames in the simval combustor[R]. AIAA-2007-980, 2007.
    [41]
    Andresen P, Schluter H, Wolff D, et al. Identification and imaging of OH (v"=0) and O2 (v"=6 or 7) in an automobile spark-ignition engine using a tunable KrF excimer laser[J]. Appl Optics, 1992, 31:7684-7689. doi: 10.1364/AO.31.007684
    [42]
    Slabaugh C D, Pratt A C, Lucht R P. Simultaneous 5 kHz OH-PLIF/PIV for the study of turbulent combustion at engine conditions[J]. Appl Phys B, 2015, 118:109-130. doi: 10.1007/s00340-014-5960-5
    [43]
    Sutton J A, Lempert W R. Recent advances in high-energy, high-repetition rate diagnostics for PLIF, rayleigh and Raman scattering imaging in turbulent reacting flows[R]. AIAA 2011-361, 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (453) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return