Wang Xiao, Qin Suyang, Xiang Yang, et al. Experimental investigation on large aircraft afterbody vortices under the influence of horizontal tail tip vortices[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 53-60. doi: 10.11729/syltlx20170149
Citation: Wang Xiao, Qin Suyang, Xiang Yang, et al. Experimental investigation on large aircraft afterbody vortices under the influence of horizontal tail tip vortices[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 53-60. doi: 10.11729/syltlx20170149

Experimental investigation on large aircraft afterbody vortices under the influence of horizontal tail tip vortices

doi: 10.11729/syltlx20170149
  • Received Date: 2017-11-21
  • Rev Recd Date: 2018-03-05
  • Publish Date: 2018-08-25
  • The vortex system of a large aircraft afterbody includes a counter-rotating vortex pair (APV) generated by the afterbody separated flow and horizontal tail tip vortices (HTV). The characteristics of the vortices of a simplified afterbody with and without horizontal tails were measured in the wind tunnel using PIV. APV shifts upwards when moving downwards. A four-vortex system is observed for the afterbodies with horizontal tails. APV is significantly affected by HTV:APV shifts upwards faster and moves outwards in spanwise direction; the existence of HTV strongly reduces the vorticity strength of APV. The restraint effect becomes stronger as the span of horizontal tail decreases. Inflow speed has little to do with non-dimensional parameters of the vortices under low speed conditions.
  • loading
  • [1]
    Peake D J, Rainbird W J, Atraghji E G. Three-dimensional flow separations on aircraft and missiles[J]. AIAA Journal, 1972, 10(5):567-580. doi: 10.2514/3.50159
    [2]
    Hallstaff T H, Brune G W. An investigation of civil transport aft body drag using a three-dimensional wake survey method[R]. AIAA-1984-0614, 1984.
    [3]
    Britcher C P, Alcorn C W. Interference-free measurements of the subsonic aerodynamics of slanted-base ogive cylinders[J]. AIAA Journal, 1991, 29(4):520-525. doi: 10.2514/3.10614
    [4]
    Bulathsinghala D S, Jackson R, Wang Z, et al. Afterbody vortices of axisymmetric cylinders with a slanted base[J]. Experiments in Fluids, 2017, 58:60. doi: 10.1007/s00348-017-2343-9
    [5]
    Epstein R J, Carbonaro M C, Caudron F. An experimental investigation of the flowfield about an upswept afterbody[R]. AIAA-1994-1840, 1994.
    [6]
    Epstein R J, Carbonaro M C, Caudron F. Experimental investigation of the flowfield about an upswept afterbody[J]. Journal of Aircraft, 1994, 31(6):1281-1290. doi: 10.2514/3.46648
    [7]
    Gentile V, Schrijer F F J, van Oudheusden B W, et al. Afterbody effects on axisymmetric base flows[J]. AIAA Journal, 2016, 54(8):2285-2294. doi: 10.2514/1.J054733
    [8]
    Claus M P, Morton S A, Cummings R M, et al. DES turbulence modelling on the C-130 comparison between computational and experimental results[R]. AIAA-2005-884, 2005.
    [9]
    Wooten J D Ⅳ, Yechout T R. Wind tunnel evaluation of C-130 drag reduction strakes and in-flight loading prediction[R]. AIAA-2008-348, 2008.
    [10]
    Bury Y, Morton S A, Charles R. Experimental investigation of the flow field in the close wake of a simplified C130 shape a model approach of airflow influence on airdrop[R]. AIAA-2008-6415, 2008.
    [11]
    Bergeron K, Cassez J F, Bury Y. Computational investigation of the upsweep flow field for a simplified C-130 Shape[R]. AIAA-2009-90, 2009.
    [12]
    Bury Y, Jardin T, Kloeckner A. Experimental investigation of the vortical activity in the close wake of a simplified military transport aircraft[J]. Experiments in Fluids, 2013, 54:1524. doi: 10.1007/s00348-013-1524-4
    [13]
    Calarese W, Crisler W P, Gustafson G L. Afterbody drag reduction by vortex generators[R]. AIAA-1985-354, 1985.
    [14]
    武宁, 段卓毅, 廖振荣, 等.大型飞机扁平后体导流片减阻增稳研究[J].空气动力学学报, 2012, 30(2):223-227. doi: 10.3969/j.issn.0258-1825.2012.02.016

    Wu N, Duan Z Y, Liao Z R, et al. Research on chine of aerotransport after-body for drag reduction and stability enhancement[J]. Acta Aerodynamica Sinica. 2012, 30(2):223-227. doi: 10.3969/j.issn.0258-1825.2012.02.016
    [15]
    Jackson R, Wang Z, Gursul I. Control of afterbody vortices by blowing[R]. AIAA-2015-2777, 2015.
    [16]
    黄涛, 王延奎, 邓学蓥, 等.尾翼对民机后体流动特性的影响[J].北京航空航天大学学报, 2006, 32(6):645-648. doi: 10.3969/j.issn.1001-5965.2006.06.005

    Huang T, Wang Y K, Deng X Y, et al. Influence of empennage on flow over upswept after-body[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(6):645-648. doi: 10.3969/j.issn.1001-5965.2006.06.005
    [17]
    Wang Y K, Qin S Y, Xiang Y, et al. Interaction mechanism of vortex system generated by large civil aircraftafterbody[J]. Journal of Aeronautics, Astronautics and Aviation, 2017, 49(1):67-76.
    [18]
    张彬乾, 王元元, 段卓毅, 等.大上翘机身后体设计方法[J].航空学报, 2010, 31(10):1933-1939. http://d.old.wanfangdata.com.cn/Periodical/hkxb201010005

    Zhang B Q, Wang Y Y, Duan Z Y, et al. Design method for large upswept afterbody transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(10):1933-1939. http://d.old.wanfangdata.com.cn/Periodical/hkxb201010005
    [19]
    Jeong J, Hussain F. On the Identification of a Vortex[J]. Journal of Fluid Mechanics, 1995, 285:69-94. doi: 10.1017/S0022112095000462
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (201) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return